PLART SUCOEBEIOLS ON GRARIBG RAHGES IS SOUTHERA ARIZOMA.
PART OAR. THE ORIGIHAL VEGETATI E.

1. Evidenoes.
2. Reliets.
R. Reveration under proteation.
3. Farly recorte, reports of explorations, to.
4. Statemente of eariy settiorm.
II. Reconetruation of the original range (a pieture of conditiene in tarly tisent.
5. Distribution of gramaland and rainfall.
6. Conditions which maintained the dominenee of grameve (firea, rainfall, soil ahimeter, to.).
7. Original fauge ind the maintenance of a natural balanoe between grasing and prodatory animals.
8. Differenoes of former ad present graging conditions.

PART THO. THE PRLSERT VEGETATIOA.
L. The Detruction of the Original Range.

1. The deftruation of the original grasing animala.
2. The upetting of the natural balenee mong grasing and onruitorong animall.
3. Letroduetion of onthle and thoir effect.
LI. The preadnt range.
4. Coaditions on the range.
5. Prinelples of guocesion under craging conditions.
6. Introtuetion of alien plante.
7. Conditions of oontrol which are largely responitiole for the prement gtate of the range.
PART THREE. RAMGE ILPROVEMENT.
I. Experinentril Studies.
8. The eiteat of total protection.
9. The effeet of rodent grasing when protected againet onttle erasing.
10. The effeet of cattle grasing with pertial removal of rodente
11. Eftect of deferred exasing.
12. Rotmtion and the handina of graen typen.
13. The effeet of burning.
14. The introduation of alien browse plante, herbs, and gramees,
15. Hegeeding the range: (a) with alien, (b) original ernseen.

1I. Practionl Handilng of the Range.

1. Feneing lor grabs types and for control of the range.
2. water development.
3. Salting me thods.
4. Kodent control.
5. Hand 11ag of erass types.
6. Heasuring renge utiligation.
7. Overgraging indiontors.
8. Rainfall oyolon.
9. Reserve and energenoy feeds.
10. Expansion and contredtion of herds.
11. Leaf-Structure as related to environment. Am. Journ. Bot.4:533-560. 1917.
12. The invasion of a Missouri River alluvial flood plain. Am. Midl. Naturalist
13. The malvaceous plants of Texas. Texas Agric. Exp. Sta. Sirc. 22:1-18. 1920.
14. Distribution of the Malvaceae in southern and western Texas. Am. Journ. Bot. 8:192206. 1921.
15. Prairie inclusions in the deciduous forest clinax. To be published in the Am. Journ. Bot. for October, 1922.
B. Distribution of Arizona Wild Cotton (Thurberia thespesioides) To be published by the Experiment Station of the University of Arizona.

PROJECTS AND INVESTIGATIONS IN PREPARATION.

1. Ecology of the Boulder Region, Colorado. Investigations covering a radius of about twenty miles with Boulder as a center have been under way for two seasons.
2. Leaf-structure under controlled, measured, environmental conditions. A large amount of data has been collected on this study in a little over a years time. Drawings of leaf sections and assembling of data, and probably a fem more greenhouse experiments, remain to be done.
3. Plant ecology of northern Arizona with especial reference to grazing problems. Work on this is to begin in June, 1922. It is plamed to make extensive surveys as well as intensive studies of special areas by means of instruments and quadrats. Comparison or vegetation and factor data with southern Arizone will be kept constantly in mind. Imediate utility of all facts collected to farming, grazing and forestry vill be emphasized.
4. Methods and principles in the eradication of poisonous and other objectional plants. Data is being accumalated from a great variety of sources; from personal experience with the eradication of cotton in southern Texas; from reports and experiences of state departments of agriculture; from reports and experiences of the U. S. Department of Agriculture in the barberry, currents and gooseberries; from experiment station reports; etc.

PLANT SUCCESSIONS ON GRAZING RANGES IN SOUTHERN ARIZONA.
PART ONE. THE ORIGINAL VEGETATION.
I. Evidences.

1. Relicts.
2. Reversion under protection.
3. Early records, reports of explorations, etc.
4. Statements of early settlers.
II. Reconstruction of the original range (a picture of conditions in early times).
5. Distribution of grassland and rainfall.
6. Conditions which maintained the dominance of grasses (fires, rainfall, ail character, etc).
7. Original fauna, and the maintenance of a nature balance between grazing and predatory animals.
8. Differences of former and present grazing conditions.

PART TWO. THE PRESENT VEGETATION.
I. The Destruction of the original Range.

1. The destruction of the original grazing animals.
2. The upsetting of the natural balance among grazing and carnivorous animala.
3. Introduction of cattle and their effect.
4. The present range.
5. Conditions on the range.
6. Principles of succession under grazing conditions.
7. Introduction of alien plants.
8. Conditions of control which are largely responsible for the present state of the range.
Part three. Range laproveaent.
I. Experimental Studies.
9. The effect of total protection.
10. The effect of rodent grazing when protected against cattle grazing.
11. The effect af cattle grazing with partial removal of rodents.
12. Effect of deferred grazing.
13. Rotation and the handling of grass types.
14. The effect of burning.
15. The introduction of alien browse plants, herbs, and grasses.
16. Reseeding the range:(${ }^{\text {d }}$) with alien, (b) original grasses.
II. Practical Handling of the Range.
17. Fencing for grass types and for control of the range.
18. Water development.
19. Salting methods.
20. Rodent control.
21. Handling of grass types.
22. Measuring range utilization.
23. Overgrazing indicators.
24. Rainfall cycles.
25. Reserve and emergency feeds.
26. Expansion and contraction of herds.

QUampltaive studies on the vegetapion CF THE GRAZING RANGES OF NORIHEPN ARILONA

BY F
J. V•G. LOPTFIELD ASSIETAITP ECOLOGIET, CARNE GE INSMINUTION CF

WASHINGYON

THRSIE ORFERED IN PARI REQUIPELADTH FOR THE DEGREE OF

DOCPOR OF PHILOSORHY AT PHE UNIVERSIPY OF ARIZONA

Preface

Certain principles concerning the distribution of plants, wile now well mow to ecolosists, are not in a form available to the average etudent. A brief discussion of them is therefore not out of place. A study of plant commanties has revealed two principles of fundamental importance. The first is that of climax associatiors, that the wioespread groups of plants forming the characteristic vegetation are the dominating plants controlling the growth of all less importent plants associated with them, and able to compete with, and replace all other major plants after a time, upon their domain. The second is the principle of succession,

That a plant will not grow in a habitat or environment for which it is unsuited, is selff-evident. However, it of ten happens that a plant can not survive in a habitá to which it otheywise is fitted because of inability to compete with the existing plants. The dominant plants on an area are consequently those not only adapted to grow under existing conditions, but able to hola the ground against all other plants present. When they are also able to hold their dominance permanently they are memoers of the climax association. If, however, they can retain their dominance orly for a time and are replaced by othexs able to become established under the conditiors ereated by them, they are called succes-
sional dominants. The new invaders of the area may also be successional in which case these will in turn so modify the environment that another group of dominants can establish themselves and take over the eround. This continues until the climax dominants are reached are able to so control the area that no other group of plants can invade it in competition with them. A corollary to the principle of succession, therefore, is to the efect that plants tend to modify the conảitions unảer which they grow, and in zo doing, they very often simply prepare the ground for the invaders which are destined to drive them out.

This is best realized by considering some specific habitat. A bare rock surface in a montane forest is wholly unsuited as a substrate for the plants of the climax vegetation. The only plants normally able to colonize and exist upon it are crustose lichens. When sufficient numbersof these have colonized the surface, enough water is retained to permit the growth of foliose lichens which then invade the habitat. These in turn retain a lerger supply which permits of invasion by mosses. By this time a slight amount of soil is built up by the decay of plant parts, catching of aust, and by aeeping a certain amount of water present at nearly all times, frost action may cause the rock to disintegrate. Eerbs will then colonize the surface and build up the soil still more, permitting shrubs and finally trees to invade the area. In this manner each group of plants prepares the ground for the next uritil the elimax vegetation is reachea.

Successions fall naturally into two types, primery and seconary. A primary succeseion commences usually with a bare rock or a water surface, and is thus named since the plants themselves control conditions throughout the history of succession, furnishing or causing the accumulation of soil and preparing the way for the next stage. A secondary succession is initisted by some denuding agency which removes the vegetation present at the time either in whole or in part, but does not wholly remove the soil to form a bare rock on free water surface. In such successions, speed of invasion and various other factors enter in. Hence the action of seconary succession dominarts is not necessarily a modification of the habitat which enables the succeeding vegetation to become established. To illustrate, again using the montane forest as an example, fire in removing Douglas fir is followed in most cases by an aspen cover. fit Seedings of Douglas agedually establish themselves under this cover and the aspen is replaced by them as they grow. The climax vegetation occupies the ground, therefore, with but one intervening stage. But in some cases, a burn may be colonized directly by Douglas, showing that aspen is not a necessary step. Aspen produces large amounts of viable seeds easily carried great distances by the wind and is thus able to plent a burn much more quickly that Douglaćas a rule. Fire merely served to remove the competition of the climax dominants for the time.

A secondary succession may run its own course to the
olimax tege or maj run into come stage of the primary suceession. Repeated bume in tbe Dongee fir eoteiation may remove aspen to form a cover of bracken on fireweed when in then will be regleced asuelly by grasees and hexpe of the herb stage in the primary succeseion. Nany uraesposins in the forust have tais oriein. From this point on, the sueveseion will be eseentiglly like that of the primary succeesion, silthongh line ereater mount of soil ney eause some of the etrages to be coureviated or even to arop out.

The elimax veeftation is the stable vesetrion of the region, but this stability is aymaie and especially towarde the edge of the formation, ie easily upet. Then a tree dies or is killea, a enocession io often initiated upon the small area once ocenpied, In the mature formatiod this soes on constanty. A wing in the olimatic egole may caue one formation to eneroach apon another in the contact between the two while a few veare later the progresgion mag go the other way. This is one expranation of cootone or trancition zonee beveen formetions. Sometimes an wrea ie at the meeting point of more than tro formations and sll are intermingled. Aroand Cabazon, California, from Baning to Thitefater, afe found representatives of foun elimax fomatioce, olosely associsfed. The dominents of one fomation will at times denetara the entire adjacont formation. Thus in northern Axizow the grasslend dominants ate asually found between the trees of Juniper-Eingon aspociation and extembing sometimes into the loner ehee of the yellow pine.

The principles of plent suceession as now understood Were proposed by Clements (1916) in "Plant Succession" and the elimax formations of western United States in "Plant Indicators" (Clements, 1920). Future work must now consist of investieations of unit suecessions or fare texees and of the factors involved. This must be done by the use of the quadrat method anä of factor stations. Certain pioneers have already achieved valuable results from such studies. Shantz (1911;1917), Weaver (1914;1917), Weaver and Thiel (1917), Bergman end Stallard (1917), Stallard (1917ms.), have used these methods successfully. The United States Forest service has employed them in grazing studies largely with exeellent results. While these methods are in widespread use, not many results have as yet been published. A series of quadrats must be maintained ane chartea over a period of many years before the data obtained can have Very considereble value in regard to successions, although one year's work will throw much light upon the present composition of vezetation. This is clear when it is realized that a quadrat placed in some early stage of a primary succession may require much more than one man's lifetime to pass into the climax or ultimate vegetation stace. But when a quadret or a number of them are placed in each etage of such a suecession, a picture of tre whole course may be obtained in the time required for each stage to pass on to the next, and the time of investigation shortened considerably. Even then to complete the necessary aata requires a
number of yews. However, a uable results are obtained with the first charing and grow in value each sueceeding year as long as the investigation continues.

This investiation covere a period of six years at the most. Many of the quaurats, however, were adaed in 1922 and hemee have not as yet great value in successional studies exoept by comparison with one another. Thus where some are in places where the grasset have been protected ior some yeurs and others of the same type are subjectea to heary grazing, it is permissible to draw conclusions from these in regard to grazing effects. On the other hand, certain quadrats were inct lled in areas whioh were heavily or partially grezed until 1918 and the areas fenced for complete protection. Juch quadrats have therefore 6 shown considerable change during the six years of the investigation and are of the grecteet value in interpreting the data from the more reeent quadrats.
belownstoramonat
The project was made possible by the eooperation of several organizations. The U. B. Forest Bervice paid the cost of the fenced plots at Tilliams and Coconino, Arizona, and these sine placed on the Tusayan National Porest. Mr. Reia met the expense of fencing the plots on the Double 0 Ranch (Reid and Cashion) south of Seligman. Mr. D. A. Gilchriet of the U. S. Biological Survey anc his asssistant eonstructed the fences. The University of Arizone has cooperated ath the invectigetion from ite incep-
tion. Dr. a. W. Voxhics of the University osiried on the ohurting of the quarete for the ecason of 1978 while the Writer was in the military serviee. Dr. P. Taylor of the the U. S. Biologicel Survey hes inspeoted the areas with the writer cach veax, and Mr. D. A. Gilchriet hes arranged Whenever possiole to keep the proper areas colonized with prairie-doge. Cther memoers of the Biologieal gurvey have shown a keen interest in the project, notably Major T. A. Qoluman ona Dr. N. T. Neleon. The Forest bervice through the supervisor of the Pusayan National Porest (at present Mr. Fimball) has darried on inspectione of the areas reporting severul times during the season on the conaition of the plots. Ana lastly, acknowledgenent is d̈ven Dr. T. P. Clements of the Camegie Institution of Tashington who organized the research and made it possiole to camy it tinrough.

QUANIITATIVE STUDIES ON THE VEGEPATION OF THE GRAZING RANGES OF NORTHERN ARIZONA

INPRODUCTION

REGION COVERED. The region covered in this study consists of a strip of the Gtate extending from the California boundary along the Santa Fe Railway to Flagstaff. From Seligman it stretches south by way of Prescott to Phoenix, and from Plagstaff by way of Mormon Lake to Pine and Payson. From Williams and Flagstaff it extends north to Grand Canyon. This strip is typical in its vegetation of the entire northern part of the Statelwith the exception of parts of the Painted Desert, and of certain other sucuessional areas chiefly characterized by the presence of Atriolex species. Other lociations occur, as for instance, at Adanana, Winslow, and much of tine surrounding area, the short-grass plains contain scattered small shrubs of Artemisia bigelovii which at this place are a natural constituent of the climax formation.

This region is of great interest, for in it are containea samples of all the climax formations to be found in the State. In the eastern portion are the San Francisco Mountains wich, with the White Mounteins, are the only ones in the State high enough to have a true alpine flora,
constituting the alpine meadow formation. Below it successively down the mountain side are founc two formations, the sub-alpine forest climax composed largely of Inglemenn spruce in this region, and the montane forest climax, represented by two consociations, Douglas fir and yellow pine. Extenaing west, north, and east from the mountains proper is found the pinyon-juniper formation, ana below and beyond this, the southwest faciation of mixed prairie, which is a part of the great grassiand climax. From Kingman westward, this is replaced by the desert chaparral elimax of LarreaFranserig formation. This extends across the western part of California to Cajon Pass. The accompanying map, while not strictly a formation map, since that part of the grassland which forms savannah with the adjacent formations, have been mapped with those formations, rever the-less is an accurate record of the vegetation as it now exists.

Merbods. An attempt has been made to make this study extensive as well as intensive. A quantitative investigation of the composition and movements of the vegetation upon a restricted area is of greatest value when an extensive surVey of the surrounding region has been made in order to determine the relation of the area to the whole of the formation. The area studied intensively can be but a few acres at the most, and yet the results obtained are representeitive of a considerable region. Unless a consiãerable part of the formation is examined, it can not be known how mach of it is typified by the area, nor to how great an extert the whole
formation is represented. Therefore repeated trips over the states west of the Mississippi and an examination of as much as possible of the vegetation of these states has been of great value in determining the relation of the vegetation of the region studied to each formation as a whole. Repeated survegs of the region have in addition permitted of placing stations for deteiled studies in the most significant places, as well as furnishing the data for the accompanying map.

The basis for this as for all other quantitative studies of $v \in g e t a t i o n ~ w a s ~ t h e ~ s t a n d a r d ~ q u a d r a t ~ a n d ~ i t s ~ m o d i f i-~-~$ cations. A standard quadrat is a square meter of ground staked permanently so that the plants upon it can be charted each year or after each growing season. A transect is a strip usually one or two meters wide and long enough to include the desired plants. Community maps are charts made of larger areas rarely less than an acre in size, in which the plants are mapped by communities as the name indicates. Bisects are made by excavating a trench and mapping the plants growing along one eage vertically, thus showing graphically the height, growth, spread, and inter-relationship of the roots of the piants found, as well as their relation to the soil. Tristat ${ }^{\prime}$ s are made by ariving three stakes into the ground for a camera tripod to stand upon. By using the same camera and tripod each year, it is possible to photograph the same position, and the successive photographs are measured for changes. In addition, the clipping of quadrats for
the measuring of height, growth, and vegetation counts uner Were employea to gain a quantitative measure of the compoeition ana movements of the $\nabla \in E \in t a t i o n, ~ a n d ~ t h e ~ e f f e c t ~ u p-~$ on it of rodent and cattle grazing. Fencing, burning, and other means were employed to vary the conditions under which the plants existed, ana the reaction of vegetation to such conditions measured by the means indicated.

STATION. The quadrats, transects, and other areas were grouped in stations located at significant points in the region. Three stations were placed in the aesert scrub or chaparral, one near Yucca, Arizona, another eight miles west of Kingman in the Sacramento Valley, and a third beLow Cave Creek in the edge of the Salt River Valley, making two in the western and one in the southern part of the region. Three stations were placed in mixed Boutelous gracilis and B. eriopoda grassland, one two miles and one six miles east of Kingman in the western or lower eage of this faciation, and the thirä in the upper Chino Velley ten miles south of Selieman which is near the upper border of this form of the short-grass association. At Tilliams, a station Was placed in Boutelou gracilis mixed with Chrysothamqus and Guterrezia in an open park in the Juniper-Pinyon-oak formation. North of Tilliams, two stations were placed in successional phases of this formation, one twenty miles south of the Grand Canjon in an area disturbea by prairiedogs, and another thirty miles south in a Eurotia society. One station was pleced in the chaparral, or oak-ceanothus

8
formation eifint miles northeast of Prescott, One station was placed near Coconino, twelve miles south of Grand Canyon in a wheat grass park in the yellow pine forest. Additional stations of minor importance were located at various other places to help interpret the results from the other stations, and to add to the evidence obtained.

THE VEGEPATION

THE FORMATONS. The vegetation in the region falls into seven great climax formations. Over the greater part of the area belonging to each formation the climax dominants occupy the ground except where graging, logging, or fire have removed the original cover. These formations in general tend to form zones at definite elevations, not because the elevation acts directly upon the plants but because rainfell usually increases with the elevation and the factors of evaporation, temperature especially, decrease. But since the northern slopes of a mountain are cooler and evaporation not so intense, these zones tend to run lower on this side of the mountains, and for opposite reasons tend to move higher on the south or southwest sides. Canyons are the courses of cold air arainage from the higher elevatmons as well as of water, and permit the higher formations to extend sometimes a thousarà feet or more below their normal level on the mountain slopes. Dry, hot ridges with shallow, coarsely texturea soil have the opposite effect. For these reasons the $v e g e t a t i o n ~ d o e s ~ n o t ~ o c c u r ~ s t r i c t i y ~ i n ~ z o n e s, ~$ and elevation has no effect save as it influences soil mois-? ture and evaporation. As this influence is usually all-important save in the instances noted and certain other exceptional ones the zones may be ascribed to fairly definite elevations over the greater part of the region.

The alpine meadow association occurs on the higher peaks of the San Francisco Mountains above 11,500 feet (3500 meters). It is composed of certain low shrubs, mainDy willows, an ar a great many species of low-growing herbs. The most important of these from the grazing standpoint are the various grasses and sedges. Po a rupicola and others, Festuca brachyphglla, Agropyron scribneri, Trisetum subspidatum, anu Phleum alpinum are the commoner species of the grasses. They are outnumbered by the sedges which are the dominants, particularly Elyna bellarà, Carex rupestris C. and filifolia. These and the grasses, together with cortain clovers and other herbs, form the main supply of forage. However, the small area covered by this formation, and the shortness of the growing season, reduces its value as range materially.

The subalpine forest occurs between 9,500 and 11,500 feet (2900 to 3500 meters) and is practically confined to the San Francisco Mountains in the region under discussion. It differs from that of the more northern states of the Rocky Mountains in that only one of the two chief dominants is present, namely, Engelman spruce. The other, Abies lasiocarna, loses dominance in central Colorado. Lesser dominants in the region include foxtail pine (Sinus aristate), and limper pine (Minus flexilis). The Ingelmann spruce (Pice engelmanni) often forms dense forests, where the terrain permits, with little or no undergrowth. Occasional meadows and fire-made parks occur, however, which have high
grazing walue as summer range. Characteristic grasses of the fire-made parks and the more open forest are Danthonia spicata, Calamagrostis purpurfscens, an Muhlenb The moister meadows contain Poa pratensis and others, Calamagrostis canadensis, Bromus richardsoni and others, and several grasses and sedges of minor importance. Like the alpine meadow formation, the small extent and rather limited seasons, reduce the value of the Engelmann forest to minor importance as range in comparison with the succeeding formations.

The montane forest also has tivo major dominants, both of which are present in this region. Douglas fir tends to form pure stands at the upper limit of the formation, and yellow pine does lixewise at the lower edge. The greater part of the Mogollon Plateau forest is nearly pure yellow pine. Douglas fir is lixe Engelmann spruce in that it often forms dense stanas with but little undergrointh. The yellow pine forest, however, is much more open as a rule and often has an appreciable stand of grasses and other herbs running through it. This formation occurs usually between 6,800 and 9,500 feet in elevation, (2000 to 2900 meters), but because of differences in rainfall in places will vary greatly. Near Prescott it drops as low as 5000 feet. Pinyon-Juniper woodland is a very open formation and only occasionally at its upper edze occurs in sufficiently dence stands to shade the ground uniformly. It usually forms a savannah with the srassland dominants, and such areas are
not climex Pinyon-Juniper but a trensition form of graesiand, Pinyon pine is more common at the upper eage of the woodand formation than at the lower. Juniper, especially, tends to run coneiderable distences down into the grasslend formation ainong rocky ridges and broken ground. Grass fires sweeping up into it aleo cleark away the trees and cauees tongues of grassland to run up into the woodand. For these reasons the lower limit of the formation is hard to define. In this region it secms to occur as a formation between 5,800 to 6,800 feet, although on broken ground or shallow soin particularly, it ocours as a subclimax to grassland and chaparral a full 2000 feet or more lower.

Oak-Ceanothus chaparral is also a formation with indefinite limits, It is placed by Clements (1914;1920) as the next formation below Piryon-Juniper woodand. To the north and to the west of the San Francisco Mountains it is either patchy, narrow, or entirely wanting. To the south, however, the reverse is true. Below the edge of the Nogollon Rim above Pine ana Payson, End at Prescott as well, this chaparral formation is of vast extent. The Junipers at these places ocour usually as stragglers in the chaparral. The most typical dominants of this formation present at Preecott were Suercus unaulata, Ceanothus fenderi and Schmaltzia.

The great plains grassland occurs from Kingman on the west to Ashfork. In general, it ocours from 3,500 to 5,800 feet elevation as a climax formation, but is found above this to 7,000 feet as a subclimax. This is the most important of the formations from the standpoint of grazing.

The southwest extension of the grassland which is found in thie region differs from the faciation to the east in not having buffalo-grass (Bulbilis dactyloides) as a major associste $\mathrm{m}_{\mathrm{i}} \mathrm{th}$ blue grama (Bouteloua gracilis). Instead, this latter dominant is usually associated with wooly-foot grama (Bouteloua eriopoda) which is also found in the desert plains formation. A certain amount of ring grass (Muhlenoergia gracillima) ocours particularly in eertain overgrazed swales or flats. The dominants of lesser import nce are Galleta (Hilarin jamesii and H. mutica) and western aropseed (Sporobolus cryptandrus and its subspecies).

The true desert is largely contined to California; the Mohave and Colorado deserts. A narrow belt besinning near the Mexiean border south of Ajo and extending north and westward along the Colorado River comprises its extent in Arizona. flarrow extensions to the east of this region oceur on one hand, on the other, the grassland extends Westward into the area. Along the Atchison, Topeka, and Sante β e Railroad, this formation begins properly at Yucea. Between this town and Kingmen, overgrazing has destroyed the original grasses which formea a savannah with Yucca bacpta and Opuntia arborescens, thereby practically adũing this to the desert.

The desert scrub formation as a whole consists of desert plains grassland anc true aesert. The dominants of the true desert consiste of creosote bush (Larrea mexicana)
and desert scrub (Franseria dumosa). Those of the desert plains occur in two faciations, an eastern and a western. The eastern consists of creosote bush, mesquite (prosopis juliflora) and Flourensia cernua associated with grasses, the western of creosote bush, mesquite, desert scrub (Franseria àmosa), Yucca baccate ana Yucca elata. Dominants of lesser prominence but of considerable importance include desert buckwheat (Eriogonum poliofolium), Joshua trees (Yucca arborescens), ocotillo (Fouquiera splendens), catsclaw (Acacia greggii, A. contort? etc.,), pablo verde (Parkinsonia microphylla, P. torreyana), sahuaro or giant cactus (Carnegiea sigantea), prickly pears (Opuntia engelY mani, 0. phescantha, 0 . discata, etc.,), chollas (Opuntia bigelovii, 0 . spinosior, 0 . Versicolor, 0 . fulgida, O. heptocantins, 0 . arborescens, etc.), and many others. This formation tends to break up into associations perhaps more than any other in each of the regions in which it is found. In the regions with three inches or less of rainfall and high evaporation, creosote bush and desert scrub form the true desert, and this has very little grass outside of annuals such as six-weeks grama (Bouteloua barbata).

THE GRAZED POMMAIICRS

The upper formetions, the alpine meadow, and the subelpine forest are, as previously stated, of such small extent, that they have but little economie importance from the grazing stanapoint. The associatione consiäered, therefore, consist of yellow pine forest, woodland, chaparral, grassland, anà àesert scrub savannah. The most important is, of course, the grasslana proper. The othere, however, are so open that considerable frass is found associated with them ana hence are very important as range land. A more detailed discussion of these five formations is necessary, in consequence, to gain a clear picture of the northern Arizona ranges.

The distribution of the formations in sny given area is based upon the ratio between rainfall distribution and the evaporation factors. When a large region, however, is consideced the size of the members of the ratio also becomes important. Thus if the ratio between soil water content M and evaporation E varies between (c) aná (d) for example, the station is in true grassland, if the ratio $\frac{M}{E}$ varies between (e) aná (f) it is in Pinyon-Juniper savannah phase of grasslana. If it varies between (b) and (c) on the other hand, it is in the Yucea-Prosopis savannah or ppoez desert plains grasslend. As the formation extencs south, the evaporation factors increase and a higher weter...
content is required to meet it and keep the ratio the same. But in the zone of the same ratio the plant must have s ereater root system and increased means of water conduction to meet the increased evaporation. As the formation dominants show consiaerable ability to adjust and adapt themselves to new conaitions, theee ere in large measure met, but there is an increasing tendency as the members of the ratio increase, to move into the next zone where the ratio is greater. The most striking effect, however, is to produce faciations, each of which differ from the others by being composed of aifferent dominants in part; certain dominants, as a rule, being found in all.

YELIOW PINE. The yellow pine consociation, as cilready stated, formpure stands at the lower eage of the montane forest, sine it is the more xerophytic of the two domincnts. Ascociated with it are thickets of Cowania mexquan elta icana, Quercus gambeli, and certain grasses and herbs, such as Muhlenoergia gracilis, Festuce ovina arizonica, Iycurus phleoiaes. Bouteloua curtipendula, Anaropogon seoparius hirtiflorus, Agropyron smithii, and A. spicatum. The first two grasses are found under the trees where these are not too dense, the next three are common where ravines and broken ground keep the trees scattered, and all are commonly found in both the water-made and fire-made paris. The Grand Canyon forest, unlixe the Mogollon, resembles the yellow pine forest of the aesert ranges of California in that Athemisia tridentata oceurs scattered through it as

WEII as in its parks.
The forest stuaica in greatest detail is that on the south rim of the Greno Canyon. The chief station is near Coconino in a water-made park. In it the grasees are chiefly Agropyron smithii and Sporobolus oryptandrus. On an adjacent area there are Iycurus phleoides and Bouteloua gracilis growing under the trees. In 1918 blue grama (Bouteloua gracilia) was invading the park as a result of heavy grazing, since this grass forms low-growing mats and cattle can get only the stems and teller leaves under such grazing. Westein wheat grass (Agropyron smithii) was the chief grass, although grazed to the soil level. A number of plants of western dropseed (Sporobolus cxyptandrus) were also present but had been grazed almost to extinction. Fencing of two three-quarter acre plots that spring, however, protecteà these grasses and permitted the dropseed to produce a large crop of seed which were scattered over the greatei part of the park. The ena of the growing season of 1919 found large numbers of dropseed plants evergWhere, and this grass has since been a very important constituent of the park vegetation.

Other grasses, chiefly Koeleria cristata are also present. In the entire park but one plant of Stipa comata, or porcupine grass, ocourreá in 1918. This was included in one of the fenced plots and under protection from grazing is slowly spreading. A number of plants of a low annual grama (Bouteloua procumbens) has always been presert, but
first became impoztant in 1922 when it ocoupied all available spece between the other grasses outside the plots. It was practically absent inside the plots, however, as it Was not able to compete with the protected erasses. Its grazing value is very low because of its short life and small size.

A careful study of this park, with the gresses in it placed under conditions of cattle grazing, rodent frairiedog) grazing, and totel protection, and of the more or less protected areas near Flagstaff, Riordan, and Bellemont, have given a clear picture of the original grass cover, and the results produced by rodent and cattle grazing. The rockiest areas near Flagstaff and Riordan have stands of Andropogon scoparius (hirtiflorus) and Bouteloua curtipendule. Where the ridges are not so rocky, and the soil somewhat deeper, Lycurus phleoides comes in and extends into the ravines and shallow depressions as well. The main cover under the trees over the greater part of the forest was undoubtedly Muhlenbergia gracilis and Festuca ovina arizonica (65 per 〕ent and 25 perfent respectively) with lesser amounts of stipa comata, Agropyron smithii, and Koeleria cristata. In the sheillow soil of the riâges, in in the fire-made paris and other open places, a certain amount of Bouteloua gracilis was also present and still persists in such situations today. The grasses of the firemade parks are much the same as those found under the trees but show mach greater growth due to the removal of shade and the mulching effect of the pine needies.

In the water-made parks the plants were normally Agropyron smithii (35 per cent), Sporobolus cryptanarus (25 percent), Stipa comata (20 per cent), Koeleria cristata, Artemisia triàntata, A. dracunculus, Chrysothemnus nauseosus, Malyastrum lobatum, and Sitanion (two forms, a glab ine ana a wooly pubescent variety), of importance in the ofder named. The last tivo are chiefly found in places where disturbance has been caused by moles, ants, and various kinds of rodents, or by other denueing agencies. Grazing by cattle and sheep has been peculiarly $\overline{d e}-$ structive to Stipa comata and Koeleria Eristata, since both are early bunch grasses. From a very important constituent of the grass cover of the region, the former has been reauced to ore of the rarest of grasses, ana relicts of it are harà to find. Such relicts are widespread, however, and its very rapid recovery when given protection a ainst overgrazing, show theit it was at one time very important. The estimates of relative percentages were made from quadrats placed where some sort of stability seems to have been reachea under total protection.

In the deeper soils of the water-made parks, Agropyron smithif has withstood the direct effect of grazing very well. However, removal of other grasses by such grazing has proàuceã the opportunity for spreading by the shrubs, such as Artemisia tridentata (in Grand Canyon forest) Chrysothamnus nauseosus, and Gut, frrezia sarathrae. These have the ability to crowã out wheatgraes, largely by sheding, as well ai by removal of moisture.

Cattle grazing alone will not destroy Sporobolus cryptandrus unless unueually severe. Thile a tall-gress when given the opportunity to grow normally, it possesees the power to form mats very similar to those of Bouteloua gracilis under like conditions. In euch a form it does not produce much more forage than blue grama. Sheep, however, can readily graze it to the point of extinction, and prai-rie-dogs almost invariably destroy it by seeking it out in preference to the other grasses present and grazing it down to the roots. If protected before all seed plants are gone, it produces large amounts of viable seed which permit it to reestablish very rapidiy upon the area. Thus, the small number of plants present in 1918 were permitted to proauce a crop of seed that year. The following year (1919) found seedings sterting up all through the park, and at the end of this season this species covered 60.27 square decimeters of the clip quadrat as compared with 3. 20 square decimeters of wheatgrass. The difference in forage produced, however, is not as great as this difference in area, as this quadrat yielded 100 grams of wheatgrass to 117 grams of dropseed. The following year the increase of the other grasses reauced the amount of sporobolus considerably, and at present it constitutes about 25 percent of the total cover.

The forage yiela of such a ark is very high, the aversge for five years being over 1800 pounds of hay per acre. Continuous grazing, however, reduces this very considerably, although the area held by the grasses is not so much dimin-
ished. Unaer conditions of deferred grazing the yield would be about the same as under total protection.. "ith the present syetem, it is mueh lees, probable less than a half of this yield, although no data Gge available by which this may be estimated with any aegree of accuracy. These figures are based upon the resulte obtained from olip quadrats inside the total protection area, and outside under present grazing conaitions. Tith deferred grazing such a park will support a cow per three acres for three months, while under present conāitions one cow per ten aures will result in overgrazea conditions.

Overerazing in this type at first causes practical extinction of sporobolus, reduction in the number of shoots of Agropyron and the coming in of blue grama. Weeds such as Malvastrum elatum and bushes of sagebrush (Guterrezia sarathrae) come in next. The final stage is the killing out of the grassee Ieaving sageorush, rabbitbrush Chrysothamnus nauseosus, suo-species graveolens and consimilis) and snekeweed.

Parks containine Festuca ovina arizonica anả Muhlenbergia gracilis as the major grasses do not have quite as much forage as the wheatgrass type but still have high grazine value. A clip quadrat near Bellemont west of plagstaff゙ showed a yield at the rate of 1450 pouncs to the acre. The areas covered by blae grama (Bouteloua gracilis) and Texas timothy(Lycurus phleoiás) considerably less although exact data was not obtainable as the quadrats in this type were not protected from grazing. Yielas from
both of these graseer in otner formations, however, would indiaste that this type has not more than a third higner grazing value then blue grana alone.

All of these grasses, but more particularly Munlenbergia gracilis and Festuoa ovine arizonica, are found as an undergrowth in the forest itself except where they have bech hilleà out by overgrazing. In such cases they are often not replacea by other plants. Aven such shrubs as ouk (Guercus gambeliid, cock rose (Cowania mexicana). and the seedling yellow pines are often killed under these conditions.

The parks are ciestinea ultimately to be added to the forest, In the Grand Canyon forest they are invaded by sagebrush, then by oak, and finally by yellow pine. The oak and Cowania thickets are therefore the subclimax stage which tenus to persist after the climax is reached. The fire-mañe parks are often invadea directly by the yellow pine, but the water-mede paris ubually follow the couree indicated. A fire in the upper part of the forest is nearIy always followed by aspen. If seed trees still ocour nearby and a good seed gear is followed by a favorable season yellow fine follows directly,- otherwise the area gradually becomes grassland as the aspen dies out. In northern Arizona widespread seeding and establishment of yellow pine seems to be a rare event. The season of 1919 was the last year of such a crop, the previous one having ocourred about thirty years before.? ?

Pryqul-Julta. The dominants of this formation in northern Arizona are Juniperue oceidentalis monosperma, I. californica utahensis, J. Virginianc scopulorum, Pinus eanlis monophylla, ana in many places dupressus guadelpensis. The major dominante ore juniperus o. monosperma and Pinue eaulis which afe regularly essociated. Towards the west juniperus o. utahensis ana Pinus e. monophylla replace the other two. Juniperus V. scopulorum oceurs throughout the formation, but seems to become important only as an associate of oak in chaparral in the southern part of the region investigated. Certain shrubs, particularly Berberis fremontii, are found associated with the trees.

The formation is normally an open woodland with considerable grass growing under ana around the trees. generałf these grasses are tae dominants from the grassland below but on the upper eage the same grasses also occur that are found in the gellow pine forest. On rosky ridges, side-oats grama (B6uteloua curtipendula), galleta grass (Hilaria jamesii), little redstem (Andropogon scoparius), Lexas timothy (Iycurus phleoides), are often common. Because of the shading by the trees and bushes there is not
at much grass as in the grassland proper, but estimetes made from vegetation counts give one fifteenth to more than three-fourths as much grass by area as in the coresponiing pure erasslanà types. Where pady overgrazed, these gresses are replsceả by rabbitbrush (Chrysothamnus), snake-

Weed (Gaterrezia), cnd genecio dougavii, and in more open situetione oy rine-crass (munlenvercia gracillima).

Burns in this formation, if severe enough, simply clecr andy the trees whe allow the erass to hold the ground. In the caser where the grapses are aleo killed, a chaparral of Fallugia paracoxa, Rhus trilobata (Sohmaltzia), Gercocarpus pervifolius, and Berberis fxemontii will often come in. The spaces betweer these are later cocupied by grase and finclly finyon (pine)and Junipers come up through the burhes. Such eases, however, are comperstively race, and a brass fire sweeping into the formation is normally followed by a grass cover. Toncues of Juniper work their way into the grassland, partionlarly along broken ground and rocky riages, and in such places, fhopm a persistent subclimax to the Erassland as long as such topography persists. The greater part of the area ocoupied by these trees is essentially grassland climax, since the area is controlled by grasses. The true Juniper-Pinyon formation is of very small extent.

In the contact between the grassland and this formation are a number of shrubs. To the north of the San Prancieco forest end woodland are small patches of chaparrel consisting largely of Berberis fremontii ena Fallugia paradoxa. North and west of Tilliams sind nortb of Maine postofife the Juniper-Pinyon woodand comes into direet contact with the grassland. As the grassland is above the veual altituae in this strip between the san Francisco ana Grana Canyon Forest it seems probable that
it is the result of floodine and of fire and therefore a persietent subalimax to the wooland fomation. Outliexs of Juniper which have inváaed these parke, but are now aead, have fire scars, showing the manter in which they were killea, (Plete IV). The grass fires in the flood parite have apparently swept up into the surrounding woodland without penetrating very aeeply, and hare, therefore, only rilled the trees along their eages and on the ridges runine into them. The shrubs do not seem to be killed as readily as the conifers, and hence meny patohes survive as a chaparal where the associated Junipers and Pinyon (pines) huve been aestroyea. As stated, only a small part of the erea occupied by the woodiand dominante form the true woodlena climax. The Finyon-Juniper savennah is a part of the grassland climax. Where the woodend ie sufficiently dence to shade more than balf the ground below the trees, the area belongs to the wooldand formation. Even where the trees form so dense a stand that their branches touch each other, the grasses formerly coverea most of the ground beneath them. These grasses were much the same as those in the Jellow pine forest, but the eomposition was not the same. Here porcupine grass (Stipa comata) and blue grama (Bouteloue gracilis) playeá a more important part than under the yellow pines, while Arizona fescue (Festuca ovina arizonica) was of lesser importance, ano Mahlenbergie gracilis became neglible.

The chief station in this formation is five miles north of hilliams. Althoagh the fenoes have been installed at thi place for the same length of time as at Coconino, the present total protection area has veen rept as such for only two yesrs. For this reason, no part of the area has become sufficiently stabilized to permit an accurate estimate of the composition of the original grassland. No poropine grass (stipe comata) is present although relict aruas show it to have been the most important tall grass constituent of this formetion. on ootober 17, 1923, a quadrat under total protection was planted with 100 seeds of this grass, and in this manner it is hoped to gain definite information regarding its position in this type of grassland within ei few years.

Overgrazing in this forage type has practically destroyed all of the tall arass components. Only the short grasses remain and these have also been removed from consideraine areas. Even ring-grass (Mhlenbergia gracilima), Which ie almost worthless from a grazing standpoint, is suffering. Although largely imme from grazing, it succumber to the trampling of sheep and the competition of the ungrazed shrubs. Considerable areas contain nothing but fabbiturush (Chrysothamnus nauseosus) and snakeweed (Guterrezia sarathrae), which are not Erazed by liestock exeept when they are starving, with occasional glants of saltoush (Atriplex canescens) and winterfet (Eurotia lanata) which have Erazing value. Such areas are, therefore, the last stages of overgrazing and mark the final
destruction of the original range.
GHAPARRAL ZORHARION. The two ohief constitueate of this formation are suospecies of guerels anduleta and phas trilobata the letter of whioh is repreeented in northern Arizona by peciez of Schmeltzia. Counts made at the Presuott station showed that scrub oak and sumac (sohmaltzia) formed 91 pereent of the brush. Barberry (Berberie fremontii), deerorush (Ceanothus fenaleri), mountain mohagany (Oercooarpus parvifolius) and one-seed Juniper (Junipeius monospcrma) made up the other bush members of the association. Counts made at Mayer, Payson, and near Seligman all showed the same preponderance of sorub ogk and hairy sumac, guercus composing more than threefourths of the buches. Other shrubs oceur oceasionally but are of minox imortance. The bushes grow from z to 12 feet in height, the average being about 5 feet.

Over considerable parts of the region in which this formation occurs, the stand of bushes is so dense as to make a continuous cover with but few open places. At the lower euge, however, the shrubs become more ecatterea ana before their lower limit is reached have become an open savarmeh similar in many reapects to that formed by Jumiper. Where the stand is dense, there is not much gress, but where the cover is more open, there is considerable. The lower edge, which forms savannah, has practically a continuous grass cover where it has not been grazed out.

The grasses are very eimilar to those founa associeted with Juniper-Pinyon. Toold-foot grema, however, occurs in consideable quantity in this formation but ie less importunt in the woodland. The quadrets at Preseott contain blue grama (Bouteloue gracilis), side-oets grama (B. curtipenaula), wooly-foot gramb (B. Exiopoàa), and needle grass (Aristioa longicete) as the chief grasses of importance in the order named. Ring grass (Muhlenbergia gracillima) ana stichseed grass (Aristida micrantha)were also present, and are the first stages of overgrazing. At Payson the formation, because of rougher topography, contained mostly gresses characteristic of rocky slopes, siof-osts grama, hairy grama (Bouteloua hirsuta), little redstem (Andropogon scoparius hirtiflorus), Muhlenbergia emexsleyi, mesquite grass (Hilaria cenchroides) being present in adaition to blue grama. Relicts of porcupine grass (Stipa comata and stipa neomexicana) are also to be found. To fenced areas have been installed in this formation as yet end hence no definite date are to be obtainea regaraing the original grass cover for northern Arizona. The results obtained from the installations at Coloraco aprings, Colorado, are not strictly appliceole to this region. The great importance of Stipa comata in the area under protection in Coloredo, in view of the numerous reliots of this grass in northEm Arizona, leads to the inference that it was originally a hichly important constituent of the formation in the latter region also.

Overgrazing in this formation is not so asstructive in some respeats as in the other formations. The shabs protect those grasses in part which grow up through them. When all the grasses between the shrubs have been killed, there are a $e w$ under them which have escaped and can produce seeas to reestablish the range should the opportunity ever be given. Long continued overgrazing, however, favors esteblishment of the shrubs, even though these are browsed, and their competition can reduce the area covered by grasses and the value of the range per menently. Here, also, snakeweed (Guterrezie) spreade rapialy on the overgrazed range replacing the grasses. GRASSLAHD ULImAL. The great dominant of the formation is blue grama (Bouteloua gracilis). It is the only major aominant left at present in northern Arizona, the other one of former presumable importance having been porcupine grass(stipa comats). Grassland tenas to form several faciations, the one found in this region being characterized by the presence of wool 1 -foot grama associatea as a dominant with blue grama. Another faciation containing buffalo grass(Bulbilis dactyloides) instead OÏ wooply-foot grama occurs in northweetern Texes, OKlahoma, and eastem Colorado. In the great plains region, where this formation covers the greateet area, and had its most cheracteristic development, it has a shortgrass phase to the west ance south, a central region oest known as "mixed prairie" (Olements 1920), and an eastern "true prairie".

The formation in northern Arizons has also three subdivieions. The apper zone of the grasslend elimax consists of Juniper-Piayon savannah, a grassland which corresponos in composition with the mixed prairie of the great plains out has seattered Junipers in it. The midde zone consist of "true" gresslend which corresponds in composition to the shortgrass plains. The lower boundery in a yucca-mesquite savanneh which maris the grassland part of the trancition into the aesert plains formation.

The Juniper-Pinyon savannah, which has been discussed In connection with that formation, is a grasslend with Stipa comata, Dporobolus cryptanarus, Hilaria jamesii, and possibly poa eatoni as the tallgrass components, and with Boutelous gracilis as the shorterass component. The "true" gressland, has at present practically no tallgrasses mixed with the shortgrass, and the total protection areas in this part of the formation has not yet settled the question whether these grasses were of any greet importance. Hevertheless, Stipa was at one time present, and a certsin amount of aropseed (sporobolus cryptendrus) and galleta(Hilaria jamesii) are present still, the latter gress being of ohief importance on rocky slopes. The shortgrass of this association consists of two dominants, blue grama and wooly-foot grama. Blue grama (Bouteloua gracilis) is of major importance at the upper eüge of the association, wool k-foot grame disappearing as it passes into Junipea-Pinyon savamah. At the
loner euge, wooly-foot grama(Bouteloua eriopoda) becomes of mejor importance, the blue grame disappearine when it pasees into the yucca-meaquite savanah. The chief grasses of the latter savannah are wooly-foot grama, aropseed (Sporobolus cryptanarus), black mesquite grass(Muhlenbergia porteri) anà galleta(Eilaria mutica).

Taken as a whole, the chief dominants at present are blue grana ana woolif-foot grama, the tallgrass components having been grazed out in the places where they formerly existed. The lesser dominants are westen aropseed(sporobolus exyptandrus), galleta grass(Hilaria mutica and H. jamesii), and the needle grasses(Aristida purpurea, A. arizonioa, A. aivaricata) . Ring grass(Munlenoergia gracillima) and burro srass(scleropogon brevifolius) also occur where overgrazing is heavy, the latter grass occupying usually the araws subject to flooding, while the former prefers somewhat highex ground. Ring grass is readily killea out in places where the soil is subject to washing or to erosion, such as oceure in the Williams area. Burro grass is probably the subolimax stage in the hyararch succession or primary succession from a water stase. The subolimax vegetaion in the xerarch succession, i. e. primary succession originating from rock, consiste of sià-oats grama(Bouteloua curtipenalala), Texas timothy (Iycurus phleoiaes), and little reastem(Andropogon scoparius). The first olimax aominants to some in are aristiaa divaricata, galleta grass and āropseed. Blue grama
comes ir next anà all thece may be found mixed upon a rocky ridge. Noo 亲-foot grame usually does not come in until the olimax stage has been rather definitely reached except on the extreme lower edge of the formation.

The composition of the grassland in the region may be characterized as follows. The yucos-mesquite savannah phase of the formation extends from Yuca to Kinsman. The pure grassland begins one mile northeast of Kingman at the edge of the mesa overlying the town. At this place the dominants are wool foot grama, galleta grass, ana weetern dropseed in the order named. This association is elimax to forty miles east of Kingman, when upon elimbing out of the canyon containing Crozier's ranch, blue grama begins. Because of the topography, there is no intermediate zone with the blue grama coming in gradually; it is immediately a major dominant. However, in passing down the Big Chino Valley southeastward there is found a broad zone of intermingling. The composition of the grassland west of Beligman is nearly pure blue grame, but becomes more and more intermixed with wooly-foot grama. By the time Jerome Junetion is reachea wooly-foot grama has become of greater importance than blue grama, and farther south has replacea it altogether.

The grassland extends eastward with many interruptions as far as Ashfork and north of illiams. Between the Grand Canyon and Williams it holas the grounā above 6,400 feet in successful competition with Juniper as a result of flooding and fire. The ease with which Chrysothamnus, itriplex
canedeens, benecio douglasii, and other shrube penetrate and compete successfully against the grasees dould inaicate that the soil moisture is too great for the grasees to outain all before it reaches to the deeper rooted plants. The shrubs and not the grass, therefore, are the subclimax stage. Winterfat (Eurotia lanata) forms pure societies of considerable extent in this region and is seattered more or less throughout the grassland at this place. The preaence of Koeleria cristata, Festuea ovina arizonica, and mymus eitanion brevifolias also indicates greator moisture than is orainarily tound in the climax grassland.

The fortymile strip south of Kingmen is typical overgrazed yucca-mesquite grassland savannah. West of Kingmen for some distance into the Sacramento Valley are found relicts of Bouteloua eriopoda associated with the desert scruo. Hilaria mutica is also present, and because it tends to become harà and woody towara the oase of the plant, is not so aestruetively srazed as is wooly-foot. The presenee of these plants, as well as the fact that the greater proportion of äsert serud a ominants represented are the least xerophytic plants of this foxmation indicates that the original vegetation here wes the transition from grasslana to desert plains gressland. Lvidenee of overgrazing is everywhere at hand, and it must be concluded that this caused the destruction of the grasses, thus permitting the aeeert sorud completely to occupy the area. Adaitional
evidence of thie is founa by the presence of woofy-foot grema (one plant), Aristiaa purpurea mierantha, Hilaria mutios and porooolus eryptandrus in the railroad right-ofWay one mile north of Yucca.

Desean surubin The degert scrab tormation is the most xerophytic of all those founa in the United states. For this reason it contains many species of very peculiar strueture and adaptea more or less suceessfully to operate with little water unaer conicitiona of very high evaporation. The many varied means of accomplishing these result. in plants with considerable difference in eapabilities and causes them to group into many lootations. The most successful and adaptable and, therefore, the most widespread and characteristic dominant of the association is the ureosote bush(Larrea mexicana). This and mesquite(Prosopis juliflora and its varieties) are the major dominants, although mesquite often plays a minor part in the associstion. The third major dominant of the western association of the formation, Franseria dumosa, becomes important from Yucca toward the west in the northern part and from Ajo westward in the southern part of the state. An extension of it runs eastwera up the Gila River beyond Plorence, and this and a southern extension along the Santa Cruz ana San Pedro Rivers to the south form the most eastern extension obeerved in the State. $^{\text {a }}$

The associates found in the Sacramento Valley between Oatman ana Kingman were Larrea mexicana, Transeria dumosa, Eurotia lansta, Iriogonum poliofolium, Esilotrophe cooperi,
 chiof of which were manlonoereia porteri growing in the protection of the bushes, sna Dasyohloa pulohella, a small eress worthlese tor erazing and henve tenaing to replace other arasees there heavy overcrasing oceure. L few plante of an annual Erame (Bouteloae barbate) we e Found as well. Hexe ulso LatEes mexicane sna pranseric dumosa were tho dominant vesetabion. The plente foun ty Zuce, Arizona, weve vesy similur. Associated with them were ocotillo (Eouquigía splendene), winterfet (Burotia Innta), Mormon tea (Epheara Erifuraata), decrt buchmeat(Exiogonum poliofolium), wh Esilotrophe cooperi. The gresees were ealleta grase(Hilaris mutios), needle grase(iristiag purpurea mioranthal six weeks' grana(Bontelona barbata), black mesquite grass (hunlenberace porteri) which as uevel grew up through the buwhe only, and consjectoble mesa rase (Dasyehloe palehella). One mile south of Yuece are found the first Jochua trees (Iucca erborescens) which (accur founa) more typiecully in the Antelope Valley in the westem edee of the Wohave Desertin Dalifornia. Yucea radioea no Y. bacata are divo found, the lattor formine charateristic societies in the formation. Thece are two characteristio chollas also found, opuntia aborescens and pipestem cholla(opuntia leptocaulis). In the cenyons Were foun creosote buen (IEmea mexicana), mexiocn ase (Artemisia mexicana), Hormon tea (Dpheara antisuphilitica) and (E. trifurcases), oootillo (Toqguiera eplendens) and catboluw (土apia contrivta). The seasees fonna on theee siopes near Ningman, partioulanjs those muning up to the mesa
where the graesland proper starte, and ocoupied by these buches, we sioe-oets grana(Bouteloua curtipendula), woolyfoot erama(Boutelona eriopoca), six weeks' trana (Bontelona Daroata and B. aristidoides), needegrass (Aristida purpurea), mesa grass (Dasychloa pulehella), galleta grass (Hilaria mutica), äropseed (iporobolus cryptandrus) and olack mesquite grass (fuhlenoergia porteri). Othe: erasses much less common since they were found on only one slope Were Panioum barbipulvinatum' and sprangle grass (Leptooh10a filiformis).

Other communties ocour further west and south in
this formation more characteristic of the climar form. In the washes are found Dalea spinose, commonly called the smoke tree because of its peculiar grayish appearance, Simmondsia californiea, Parkinsonia torreyana, and Hymenoclea salsola. In the sendy arcas, particularly where dunes oceur, mesquite (Prosopis juliflora) grows up through them forming peculiar buahes covering the top. The trunk of the tree grows up through the sand and only the branches of the tree appear at the surfsce. Shrub societies occurring in these sandy areas contain beside the dominants cuch charaoteristic torms as Incelia suffrutescens and E. erioeephala. In the areas containing firmer soil, the washes and floou arcas aie surroundea by tall growing mesquite and creosote bushea, and are ocoupied by a peculiar shrabby grass, Hilaria rigida, hown as tobosa grass.

The formstion as found in the south eentrel part of the state or the southeastern part of the region described
here differs in thet Rramenia aumose is not wenejly resent. Kesquite is a far more importont element of the ascociation here than in the wertern part. since this reeion receives moxe rainfall thon the weeterm boundary it shoae a wowhet less xerophytio flora than that juet aeecribe日. The hilleides are commonly covereà with oootillo, Dalo verae, (paringonia microphylle), brittle bush (Lncelig farinosa), giant cactus(vereus giganteus), and sevexal chollas ana prickly pears opuntie versicolor, o. Digelovii, O. engelmani, C. pheacentha, and C. aiscata, . Along the rivere and streams containing the permanent underground water flow fairly elose to the surface are found the uesert cottonwood (populus wislizeni), syeamore (Platanus wightii), hackberry (Ieltis reticulata), and the valley floor is often covered with a dense forest of mesquite, with truns up to four feet in thicknees and reachine a heicht of forty feet or more. On the caliche tablelends or mesa, creosote bush forms nearly pure stands cortaining societies of chollas opuntia futgiaa and o. ful-

giaamanalata). The only grasses remaining at the station in the salt River Valleg were Hilaria rigiaa and Hilaria mutica. Oricinally, however, this aeaert was a rather open savanah with the preeent cominent bushes far more scattered und the spaces between oceupied by Rothrock's Exame, (Bouteloue rothrockii). The valley floor usually had heavy stana of sacaton (Sporobolus wrightii). The hillsides contained siáe-oevs erama and galleta grass.

At the present these grassee have been elmont grazen out and the shruos now completely aominate the ground, thas recembling in a mesure the true deseit such as is founa in southeastern Califormia.

THL - 2EMC

The eniel ehurcotexietio of the Arizons ranges, and indeed ol ell, in the wertem United atates, is overgrazing, Dhis das been varried on for so many veais, that it is almost impossible to find an aree that bass more than efxetion of its former capacity. In meny places, the original renge has been totally destroyed, and cattle must depeno for forege upon amaal weeds gnd spasees whiuh prine up after the raine. On the whole, this has not been earried to the extent in northex Arizona thet it has, in mary other parte of the countis, but conditions are nerexthelese deplorable. only a drastio ohange in the laws and reguletdons governing the publio domain, permitting all of the range to pase intelligentIy undex the control of the eattlemen, and wioespresa inVestigetion and educetion as to means of reestablishing the renge and reepig it up to its highest economic efficiency, oan prevent the ultimate dieappearance of one of arizona's chief industries.

In northern Arizona, as elsewhere, suoh overgrazing has been in existence for a long time. Leiberg, et al (Forest Conaitions in the San Francisco Mountains Forest Reserve 1904) writing twenty years ago stated "The areas of the noethern Arizona plateau now comprised within the reserve limits orisinelly produced a luxurient growth of erass. It is yet abundant on treots where,
owing to varions eauses, onicily lack of watering places for stock, exeessive pasturing has not prevailed ******* * * * * * The grazing capacity of the reserve is too hearIly taxed. Most of the area south of the Atchison, TopeEe, and Santa fe Railroed is eaten or sheeped out, and like conditions prevail on most of the weetern half, as well as on most of the north and east tiexs of townships in the area situated north of that railroad." They then go on to state that only a small arca centering around Sen Francisco Peak remained in somewhat its originel condition.

Since that time some attempt at control has been exereised by the Forest Reserve Zervice, but economic pressure has prevented it from being very effective. There are always too many requests for permits and Forest Service officials have been forced to consider the (needes) of the cattlemen and sheepmen to the detriment of the range. In consequence, many of the grasses reported by these writers to be common are now very rare. Large parts of the former open range have been or are being fenced. There is hope, therefore, that investigation and education in control of the range, will some day permit this region to again approach its former procuativeness.

Many plans have been advanced for the regeneration of the range. Proposals have ueen made by many cattlemen and even by officials of the U. S. Department of Agrioulture that the world be searehed for plants which can be seeded to form a new and wonderful plent cover, one
which will develop a range immune asainet all overerazine, and aule to produce forage in competition with all weeds. It seems atrange that the impracticability of this plan, In the majority of the cases proposed, should be anparent only to the trained ecologist. In the first place, the dominants of a reeion are always the plants most adapted to that form of climate. Plants introauced from a different type of region have no chance whatever to survive. Those brought in from a similar habitat have usually mach ereater ability to live in the region, but rerely have that close sdjustment to the environmental factozs that are found in the native plants. Overgrazing, however, is a factor that can be met by some plants better than othens and in some eases, introduction of plants from other places related quite closely in ulimate to the region reeults in a cover which is far better enabled to withstand the introunced factor of heavy grazing. But there is no instance on recorà to show that any renge has been improved by such means, and many occur to bhow that the reeult is disastrous. The Great Valley of Californie (The Sacramento and San Joaquin Valleys) was at one time covered with a stand of bunch grasses, Stipa setigera, stipa eminene, and Poa fenderi being the dominarts. They produced coneiaerable forage and were of velue as range throughout the greater part of the year. at present, this range has wholly disappeared, even relicts of the gresses are almost lacking. In their place is a cover of wild-
oats (Avena fatua) and several annuel brome grasces(Bromas rubens, Bromus maximus, Bromus hordeaceus and others) Which produce a crop of forage of high value for a few Weeks auring and after the winter rains, but almost or wholly valueless after that time. In the meantime, the cattlemen mast carry their herds throughout the entire year. If it were possible to bring back the original range to replace the preeent one, the gain would be incalculable. However, from all data obtainable, it would seem that the amage in that region is now permanent. From this it seems that it should be self-evident that the best means of regenerating the range is by recovery of the original erasses, or at least those of their number beet able to withstend erazing.

In each formation ere found several "grazing types" or grass associations. The chief type is always, of course, the climax association of the grasslend or those grasses which are typically associated with the climax dominants. The other grazing types are successionel stages in the verious formations. These types are therefore best considerea in connection with the grazed formation. A complete investigation into a range must take up the types foun today, the original cover as nearly as it can be ascertained, the staces by which destruction takes place and as far as posaible the means by which it can be restored.
 liste the following species of grase as comon in the yellow pine forest:

Agropyron psendorepens (A. smithii)
Andropogon hirtiflorus (A. scoparius hirtiflorus)
Aristida arizonica
Aristià longiseta fenderiana
Eragrostis neomexicana
Pestuea ovina arjzonica
Koeleria cristata
Muhlenbergia porteri ? (He probably means II. Eracilis. No
19. porteri is a desert plains grass and has never been found by the writer in the yellow pine forest while M. gracilis is a common and widespread grass in this type forest).

Poa eatoni
Bitanion breviflorum
Btipa comata
Stipa Vaseyi
He goes on to say that Andropogon, ㄹ. hirtiflorus, Aristiàa arizonica, Festuca - arizonica, Poa eatoni, and Stipa vaseyi "form 90 per cent of the entire cover, and supply the chief pasturage of the region". Epicampes risens and Muhlenbergia (porteri?) "occur in abundance along the mareins of the various runs and in the open paris where water stanas in the earls spring." several grasses which occur rather commonly in this forest are not mentioned at all. Since the area even then

Was bady overgrazed, and sinee the determinations of the erassee were not very accurste, a picture of the original vegetation can not oe had from this description.

The only reliable information in rebera to the original grass cover is that gained from fenced inclocures Where remnants of the grasses heve been permitted to recover and again hold the ground, or from areas otherwise protectea from overgrazing. Thile the six years during Which the fenced inclosures have deen inetsilled have not been long enough to (fully) bring the grasses into equilibrium, the light thrown upon their interactions by other areas partially protectea for a longer time have served to give what is believed to be a fairly acourate picture of this original cover. Over the greater part of the forest the major grasses were undoubtedly Muhlenbergia gracilis, Festuca ovina arizonica, and Stipa comata. In the water-made parks and eleewhere where the soil wes aeeper and retained considerable moisture, Agroypron smithii, Sporobolus cryptandrus, ana Stipa Viriaule(Stipa vaseyi) cominated. On the diger riages, Andropozon scoparius hirtiflorus, Lyeurus phleoiaes, Muhlenbergia emersleyi, and others were to be found. Sitanion breviflorus and the various species of Aristida were of importance only on disturbed grounà and hence their appearance on an area in number was the first evidence of overgraring. In the low er edge of the forest, grasses belonging more properly to the grasslend and Juniper-Pinyon savamah were to be
found, such as Boatelona gracilis, B. curtipendula, and Hilaria jamesii, particularly in the more open ana varmer places.

Of the grasses, Stina comata was the moet susceptible to overgresing. Thile the fenced plot at Coconino shows it to be able to hold the ground in competition with the other grasees to the extent of 25 percent of the total area ocoupied, it is nevertheless a very rare grass in the $y \in l l o w$ pine forest. The fact that it is unable to form mats such as produced by Sporobolus, or spread by rhizomes in the manner of Agropyron smithii, and that it is palatable at all stages of its growth, has caused it to be grazed out completely. Stipa viridula being more robust, and its stems becoming woody is not so easily grazed out, and the much larger number of seeds produced, permit it to reestablish much more quickly, Stipa comata, however, is probably doomed except for occasional relicts, and will never again become an importent constituent of yellow pine grassland.

Festuca ovina arizonica and Mahlenbereia gracilis have been able to withstand grawing much better, although they too have vanished over the greater part of the forest. Both produce a much larger crop of seef than does Stipa, and Malenbereia especially can eurvive by producing short leaves close to the ground. Both are normally of the "bunchgrass" type, however. It is largely upon these two grasee the eathemen will have to depend if the range is to be brought back to its original condition
in the forest proper and in the fire-made pars and logeed areas.

The grassee which have best withstood grazing have Deen Agropyron gmithii, Sporobolus cryptendrus, Bouteloua gracilis and Iyourus phleoides. Agropyron spreading by rhizomes as well as seeds and storing food underground from the occasionel shoots which always escape grazing has been able to hold its own in large measure in the situations where it is found. It is at present confined to the watergmde parks, and the deep loose soil of the washes. Sporobolus crgptendrus being able to form mate and producing lerge amounts of seed when permitted, is of the aemi-weed type, growing beet in the whees and deoper soil of the parks, and is the first to reestablish under protection. Table 8 showing its growth in area upon a clip quadrat under totel protection demonstretes this verg alear1. Bouteloua eracilis and, to a lesser extent, Iycurus phleoides form mats nomelly and are not easily grazed out by cattle. They are not very tolerant of ahade, however, and are fargely found in parks and other open situations. Figures $\frac{1,2}{2}$, and $\frac{4}{4}$, show graphically the proportion of Agropyron smitaii, sporobolus oryptandrus, and Boutelous gracilis growing in unclipped quadrets under conditions of total protection, rodent grazing alone, and of cattle grailing. The comparison is not a strict one sinee the quadeat under total protétion has, in adition to these grasses, a shrub of sagebrush (Artemisia tidentata) which

Figure I. Area occupied by the grasses on a quadrat under total protection. The upper line shows the total amount of grass, and the shaded portions, the part of the total occupied by each. Divisions show the number of square decimeters occupied. Coconino, Arizona, A park in the yellow pine forest.
 undey prairi -doy graging conditurs

Pigure 2. Area ocoupied by the grasses or a quadrat grazed by prajie-dozs only. The upper line shows the totel amount of grase, and the shaded portions, the part of the total ooupied by each. DiVieions show the number of square decimeters oceunied. Coconino, Arizona. A park in the gellow pine foreot.

Figure 3. Area occupied by the grasses of a quadrat oread by cattle. The upper line shows the toteal amount of erase, and the shaded portions, the part of the total occupied by each. Divisions show the number of square decimeters occupied. Coconino, Arizona. A park in the yellow pine forest.
take up and shedes 11 square decimeters of the quadiat, reduelug conviaerably the total amount of erass. The great increab of aropeceà (sporodolus) upón the attle grazed quadrat is aue to the extensive seeding of the entire park from the total protaction plot. The small amount upon the quadrat in the prairie-ag plot is due to its palatability to these rodents and their habit of grazing it to the noots and utterly destroying it. over the greater part of this plot, this grass is completely lacking. The firet great increase in the amount of grass undex totel protection was shown by sporobolus the meximum occurring at the end of 1919, the second year of protection. The first year permitted the plante alreaùy present to grow freely and produce a large crop of seed which apperently was spread widely over the entire park. The second year saw a vast inerease in the number of plants (best shown in figure 5 and tables 1,2 , and 8.). Since this year, the inereasing competition of Agropyron has reduced the amount of aropseed.

The potential yield of force from the three quadrats is not represented by the total area oceupied by the grasses, for the yield per unit area of one grass is not the same as that of another. The clip quadrats show thet Agropyron produees an average of 25.8 grams of forage per square decimeter of the area ocoupied by it, sporobolus 2.0 grams ana Bouteloua 0.9 gram. The potential forage value of the quadrats is therefore largely dependent upon the amount of wheatgrass present. The actual yield
of the rodent and cattle grazed plote are considerably less than the potential yield, whish represents the amount of forage the quadrat would yield under total protection. This is due to the weakening of the grass by grazing in the early spring before the food utilized to produce the shoots is replaced by photosynthesis and each suoceeding shoot mast again araw upon stosed food. Bxact data on the effect of such erazing is not at hand. The Iorase produeed if eut as hay would averase 1800 ponnôs or nearly a ton per acre each year. It is estimated that the piesent method of grazing reduces the amount utilized by the cattle to onemfourth of this, or approximately 450 pounds per acre. By deferred grazing, and reduction of the total number of cattle present, this could readily be increased by permitting the grass to get a stert in the spring, ana in large measure recover. The MuhlenbergiaPestuca forage type will produce at the rate of 1500 podnds of hay to the acre. This type has been so destructively overgrazed in this region that no estimate can be made regarding the amount actaally ootained, but it can not be great.

The life histories of the grasses and the manner of their growth is of consiacrable importance to a knowledge of range control. The shortest livea of the dominant. grasses is aropseea, get the areas have not been studied for a sufficient length of time to find the maximum age even of this grass. It is hardly possible to discover this in the oase of the otheis even in several lifetimes.

All the date at hand indicate no real limit to the length of time one of thee glants may survive, and it is quite possible that some graes mats of blue grama are far olacx than the most ancient of the giant sequoias.

The growth, average size for each year, and the ages of greatest mortsity for aropseed liporobolus cryptanarus) when grown under total ptotection are shown in table 6 . The stuay begins in each case with the seedings Which were able to establish themselves and survive to the end of the growing season. The greatest mortality probably oceurs before seedings reach this stage. If one reaches sufficient size to cover 2 to 5 square centimeters of ground it is usually able to survive until the next growing season. After a plant has been established three or fout years and hes attained an area of 20 square centimeters or more, it has become fairly well established, and if it aoes not meet with too much competition from the other grasses will probably continue indefinitely. Such competition, however, becomes serious during the gears of drought when it plays havoc with this grass. Dropseed is therefore classed as a short-lived perennial and like the others of this olass partakes in some measure of the qualities of a ruderal. The last colum showing the number of plants and their area is significant in many respects, partioularly after 1918 when some equilibrium was reached. It shows that distribution of rainfall is of greater importance than the total rainfall to the survival of the plants, While the total rainfall has a gieater effect
upon the maximum area covered oy the plants, or in other words, influences the growth of those that lived through the unfevorable part of the season.

There is no gooa rea on to suppose that this gress does not stert in the prairie-dog area fully as often as in the total protection plot and the cattle grazed plot. But when thie area is fully colonined by rodents, it is rarely found present by the end of the growing season. The manner In which prairie-dogs graze this grase has been observed cercfully. Their habit of grazing it to the roots, not leeving a single shoot to regenerate the tuft sccounts for its destruction. That this gress is grazed by them in preference to all the others found in this grazing type, is shown by its early disappearance in this plot before any serious grazing of other grasses is found.

The number of seedings starting up in a unit area is greater on the cattle grazed plot than in the total protection plot. This is accounted for in all probability by the trampling of the secas into the ground. But on the other hand, the mortality among the plante subjected to cattle graning ie higher as well, and in places resulte in the death of all of the established plants. This happened upon one quadret during 1923 because of the lateness of the rains. When the rains finally came, a number of seedlings were able to estabIish themselves, and in large measuxe replaced the former tufts. This grass, therefore, depends uponits large eefd production for survivel, and wecause of this, resembles the annual or weed tapes of eramses. The laree numuer of seeds
produced, Gns thoir gnall size perait them to ecobter whels. Sinue practieally all the segke are viable, they eqbebieh this plent vadily.

Wheatgrese (gropyron bevens) is s totally aifferent type of perennial. It í veat long-lived grase, eqowing from xaizomes, whe whle it produces a olon of seede which are viable, it gnabade chiefly by mans of ite unoeground etalks. Each node which ean do so sches up one or two shoots and these are not distinguishable from secalines. Hence it is imposiole to 10Ilow its life-bistory in the same manner as with aropsced. The fook is tored in the rhizomes mat the lose or why shoot is not serious, toou veing pooled in the anobrerouna tolk, wá s sutlicient reserve beine hept to grow nother. It vamot be trampled to death, einge the buas ace undexground, wnd in fact a eoutain amont of trampling ie beneficial winoe it keens the soil loose, and eaeien to push a shoot up through it. The deep roote and the whisome hebit confine this plont to sone extent to the degp looee soile of tho flood parke. Peruistent, heavy, and elone grazine will suguoll, weakon it by staving the rhizomes, amu carly spring grazine invares it purticularly since the iiset bhoots have not had an opportunity to replace the food mith they used. Table 4 chowing the number of shootas on quadrats unaer totel protection, prairie-dog, and cattle grased conditions and Tables 1 and 2 showing the pields unuer these conaitions show this elearly. The nomber of choots a suare metra in the ecttle grazed plot was but onemsle the number on the comesponding quadet under totel protectione

In 192s, while the number on the roent grazea quadrat wheh is much less erased, wab very neaily the same. But since the hew shoots of this grawe were cloeely graced by the roacnte in the sprine ad the grass started up and sucoulent food was still searee, the aucteding choots were not nearly as large as those protectea from grazing, as indicated by the correspondine gields, and by the plates () showing the height growth in the two respective plots. Complete otadving out of the rhizomes if lare even uncer very heavy grazing. This ie. hown by the fact that although this park is badly oversrazed, clipping of the cattle grazed quadrat yielded from 2.5 to 22.6 grams by dry weight of shoots and leaves which had survived each year end were producing some food for storage in the rhizomes. This and its immunity from trampling and dessication which results from the rhizome habit, explains ite eurvival under conditions of destructive overgrazing. Its growth habit would inaicate that a deferred grazine system io the best plan for utilizing this type range.

Poroupine grase (Stipa comata) is one of the principal dominants of the grassland climax. Under severe and sustainea grazing, however, it is doomed in Arizona. It is a buncherass, or a plant growing in tufts. When the shoots are grazed from carliest spring, it is unable to produce a crop of seed, and under the system used on the forest was grazed intil the roots starvea and it was finally destroyed. Its seeds are almoet almaye viable, and hence when tae plants are permitted to loccasionally produce a crop, will be aole
to restock the rance. The seeds (fruits) are large and have long awns from 5 to 10 centimeters long wich permit them to be carried a slift aistance from the plant. Animals carry then at times to some distence as they are bsrbed and pointed. The awns are also hitroseopic, and changes of humidity will cause them to move pushing the seed over the ground. The seadinge attain the size of about 5 square centimeters the first year, and 20 square centimeters the second, after which the tufts increase more slowly in area. Plants coverIng a square decimeter or more are occasionally found but the ueul size is not over 40 square centimeters. The yield per square accimeter of area occupied is about 25 grams (measurement maáe of one season's growth ouly) but only 354 square centimetess of the quadrat was ocoupied by this grass. Under grazing conâitions, it shows some tendency to produce a mat, but this is not sufficient to carry it over years of overgrazing.

Not enough is known about Arizona fescue (Festuca ovina arizonical as yet to give much information regaraing its life history. It is also a buncherass and shows no tendenoy to form a mat under severe grazing. The large amount of seeas produced, however, probably helps it to survive. There has as yet not been the opportunity to follow the stanting.. of any seedings and their development into estebliehed plents. Muhlenbergie gracilis is a grass of the semi-burich type, resemblins aropseed in thie respect. As with Arizona feecue, no seedlings of this grass have started up in the quadrate, ard the course of development can not be given.

Little redstem (hndropocon seoparius hirtifloyus) is destinetly of the bunchgrass type. Seedinge of thic grass are pually not more than 2 square centimeters in area the first year. At the ead of the second season, they cover about 12 square centimeters and grow to about 40 square centimeters in four years. They usually produce no seeás the first two years or more. In the spring, when the shoots are succulent, this grass ie grajed freely except when protected by the older stcms, but later in the season, they become toug and woody, and then a not seem to be palatable. It can be gra $\in \dot{d}$ in the spring, however, and unlike porcupine grass, will then produce seed if protected in some manner. Siaeoats grama (Boutelouk curtipendula) which is associated with thie grass, ean also be grazed under this system, hence the use of this type for early spring grazing woula seem to de the beet namer of hanling such a range.

Whenever possible, therefore, the rane shoula be feaved for forage types. Plaving cattle upon the Anaropogon-Bouteloua curtipencula type in the early spring, and moving them to the other types for the midale and later part of the season, would be the ideal method. This, however, can be done only when such types are segregated into areas of reasonable size, and even then the pastures would not be large. For this reason, it would baräg be a practicable system on the greater part of the forest fange.
 Theaturass forage type

$\begin{aligned} & \text { Total } \\ & \text { protection } \\ & \text { plot } \end{aligned}$:Nheatsrass - Dropseed : Both grasses	$\begin{array}{rrrrr} : 100.0: & 117.0 & 158.8 & 158.4 \\ 1 & 164.6: & 32.6 & 81.8 & 38.7 \\ : & 264.6: & 149.9 & 220.6 & 197.1 \\ \hline \end{array}$	$\begin{array}{r} 128.6 \\ 79.5 \\ 208.1 \end{array}$
Rodent grazed plot.	: Whestgrass - Dropseed :Both eresses	$\begin{aligned} & 36.8: \text { 24. } 3 \text { 22. } 6 \text { 77. } \\ & \vdots \text { Trace }: \text { None: None: } 3.7 \\ & : 37.0: 24.3: 22.6: 80.9: \end{aligned}$	
$\begin{gathered} \text { Cattle } \\ \text { grazed } \\ \text { plot } \end{gathered}$: Theatgrass : Dropseed : Blue erame :Total gress		$\begin{array}{r} 11.4 \\ 2.7 \\ 0.6 \\ 14.7 \end{array}$

PABLE 2. Table 1 expressed in terms of pounds per aere.

TABLE 3. Forage consumed and grasses áestroyed by prairie dogs and cattle in pounds per acre and in perteent of maximum jield as chown under total protection. Wheatgrase forage type at Coconino, Arizona.

Note: Serious decrease in the number of prairie dogs on the area during 1922 aecreased the damage for that gear considerably.

PABLE 4. Uhages in the amount of wheaterass present at coconino, Arizona, from the seacon of 1917 to 1922 inclusive under total protection, rodent, and cattle grazing.

The figures in brackets indicate decreace instead of increase over previous gear.

TABLi 5. Gharges in the amount of western aropeeed present at Coconino, Arizona, from 1917 to 1922 inclueive, uncer total protection, prairie aoz Brazing, and cattle grazing.

Areas are expressedं in square centimeters.

Pascu b. Detailed report on the growth of aestem aropeed unaes total proteutior, Coconizo, Arizona, (rabuletion weet for quadet ac I chowing mamer of compiling quadiat abta.)

This eives the life history sumary of the erasees of each eeason. A series of comparison shetts are used to follow the life history of each plants, Which are tabulated in thie mamer.

TabIE 7. Ohanger in the amount of blae erama present at Coconino, Arizona, from 1817, to 1922, Doth inclucive, under total protection, prairie dog grazing, chad cattle grazing.

Grass paesent at
 protection

TABLE 8. The total area of westem dropseed uron a olip quadrat under total protection (in square decimetors), Weight of fojage produced (in grams) and veight of forEge proauca pos square deaimeter of tufts (unit giela)

The rainfall data were often incomplete. When sufficient? Were at hard to make a reasonable estimate, this was done the result being given with a question mark following it.

TaBLE 9. The area in squcee decimeters occupied by restem whestaxses (4gropyron gmithii) per square meter, the vield of ary forgee in grmb, and the yielo per square decimeter of sobugl arca occupied (yield per unit area). ilp quadret unger total protertion, Coconino, Arizona.

It is noticeable thet, on the whole, the amount of forae moduced per unit area is an inverse fanction of the total torage produced, the amount produced per equare Gecimeter of unca ocengiea aecreasing as the total yiela inoreases. This is ano to increased competition for watex by the reater numer of shoots reducine the eize of each inaiviaxal shoot/ The ratio io not a striet one eince the competition of aropseed also enters into it (which expleins the apperent reversal from 1919 to 1920) and rainfall aistribution is a varisble factor which ensenges the ratio.

Figure 4. Effect of total protection (A), prairiedog (B), and eattle grazing (C) upon wostern wheatgrass (Agrogyron smithii). The curves ahow the area occupied by each in square decimeters. Coconino, Arizona.

Whertanwa

Figace 5. Lfiect of total protevtion (i), prairieaog (B), und cuttle eruzing (S) upon western aropseed (sporobolus cryptandrus). The curves show the area occupied by eaun in square decimetere. Coconino, Arizona.

Figure 6. Effect of total protection (A), prairiedog (B), aria cattle grazing (C) upon blue gram (Bouteloua gracilis). The curves show the area occupied by each in square decimeters. Coconino, Arizona.

21

B he 2 vara

GRAZING TYE OF PHE TOODLAD BORLATICN. She ehief forage tyne of Junincr-Pingon eavanaah was "mixed pieirie", Stipa comctes formine the tall component mile blue arma formed the baval part. At pecent only blue srame rembins. On the rocky wides

 up the prinuipje cover. Whis the pasesd through another, comrosed of Poxas timothy, spreadine threctm (Aristida divariceta), and poreupine erass, into the chief forage type. These thme Gexe the pinciple brajing typer of the wooland savennah. In the woodand proper was a transition into the chief forage type of the forest, and composed of arasees of both sevamnch end Iorcst.

This troe of tange also hows almost evergwhere the resulte of berious overeraning. Poreapine grese bas aisappeared over the entire formstion theroby reducire its lorace velue coniderably. Bren blue grame hes been destroyed upon vest ereas, partly as a result of prairie-dog work, and outly from sheep srazing. Cattle as a rule can not graze this grawe alose. 19 enough to cause utter destruction. Snakeweea (Guterresia), Irom havime formerl. plajed an ineignifoant part in the assooletion, has bevome the aminent plent upon such areas, vast tracte having no other vegetetion. Golcouch, of rebojt brush (Chrysothamms naubecsus) has sleo come into prominence partioularly in the aecper moister goils of the walley, wheie originally the best stmas
of grass stood. Both of these chrubs are pratically immune to grazine, althoug all enimale, cattle, wecp, and prairiedoge alife will attempt it when all other forage is gone. Balt-brush also ocours to some extent, but this shrub has value, especially as theep browse. Areas were found, particularly in the region between Grand Canyon and Williams, which were covereo oy a nearly pure stana of wintertat (eurotia lanata) and which produce considerable browse. A quadrat placed in one of these and clipped produced at the rate of 1, 028 pounds of forage in liza anáa 866 pounas in 1923. Clipping did not seem to have reuuced the yiela since there was no appreciable difference in size of plants clipped the year before, and thoee not elipped. The reauction found in 1u2s mat be attribated to aecreaned growth causea by álay in the summer rainfall. Where overgrazing by sheep has proauced this type, the range can not be saia to be destroyed, but each areas are exceptional.

The chief forage type which originally formed the gressland in the savannah was comparable in some measure to the relation that exists between ppen forest and grasslend. Blue grama grows in mats practically never occupying more than 40 perceat of the area although whadine as much as yo per $\mathfrak{C e n t}$ when orly elizhtly grazed. Between the mats grew the taller porcupiae grass, the leaves ana stems of which dia not seriously shade the blue grama. The two lages of grass had a similar relstion underground. The root syetem of blue erama held the soil chiefly from the surface to a depth of efeet, while stipa had most of ite absorbing ags-
tem of rooto vetween E and 8 feet. Blue grama, trerevore, had the first use of any rainfall, and received nearly all of the whter obtanable from the lishter rains, but poreupire grass, had a more uniform supply from wiich to draw, one that lested longex and was not subjeut to the rapia arying out charactoristio of that found in the more superficial layers. In some respect, however, the grasses did compete for watcr, for tipa has a certain number of superficial roots, and blue grama roots pentrate in years of sreater rainfall to a depth of 8 feet and possibly more. In greater part, however, the two erases formed a mixture of two communties, crowing closely assouiated in the same area, and entering as little into competition for space, ligit, or watec, as was possible unaex those conaitions.

At the present, Stipa is wholly grazed out. It was but nataral that the tall-erowing component of this forage type shoula be the ficet to 80 . Its place has been taken by the shrubs alreauy mentioned whish produce no forage, and hence the lose of this grass is a direct one from the economic stanapoint. Had the loss of this grass resulted in an increase of olue grama it woula not have been so serious, but the removal of poroupine grass, or of the weeds in the places where they are not too dense, does not seem to materially increase the amount of blue grama. No experimental evidence is at hand to indicste the manner in which stioa may be brought back, nor meane to utilize the range in such a manner that its lose be preventea end thas the maximum efficiency of this stering tupe be kept unimpaired. since this form
of gras land is oi such great extent in northem Arizona, it woula be of ereat economio benefit to inaugurate a comprehensive investigetion of this phase of range control. This forese type almot throughout ite range is now a mixtaxe of blue srama and chrubs, ohiefly snakeweed. Experiments bave been cariced out to aetermine means of possible economis value to eradicate the shruos, chiefly by means of barning and mowing. Olipping was doncin the fall, and was not effective au table 10 shoms. Whethea elipping at any other time of the year would ve of greater value, is not known, although if cerried ot fust after spring growth is fairly under way may have some effect. It is very doubtful if anything short of complete eradication of the weeds would make this a possiole method since the expense of mowing woald be coniderable. Burning is more effective although a stend of dsy grass sufficient to carry fine is necessary. This also was tried out in the fall and did not result in anything like complete eradication, out may do this if carried out at some other time of the gear. It has apparently a veneficial effect upon the grass (blue grama) for the inorease in gield and of area ocoupied was greater in the burned quadrat than in the others. Grubbing is, of course, effective out is hardig en economic method. Moreover, seedinge of the shrubs ase sure to start up in the dieturbed groand whioh results in a rencwal of the etena, and hence ary wuth method would neceacarily have to de carried out over a period of eeveral Jeare to proance a prectioally complete eradication. Burn-
ing, togethe ath rotation eraging ith feduction in the number or eraziag animale, woulu appeai the oxly economio means of destroying the weody shrubs. Jompetition oy srasses under total protection is not sufficient, no serious reauction havine ween caused b_{u} suwh means auring the fix years the experiment has been in progress. Such protection, however, prevents any increase in their number. The yiela of weedy shrubs under grazing is more than three times that found under total protection (Teble 10)

The succeseional phases of this grassland are not so easily grazed out as the olimax. The redutem-- sideoats grama type usually grow tmone rocke and in places whece some survivors are almost alwayd protectea and ready to reseed the range il siven the opportunity. Hence it is rale to fina thas type as completely eestroyed as in the climax. All the grasees of this type are bunchgrassea; sideoets grama, however, tending to form mats when alosely grazed. The transition from this type to the dominant type containe Texas timothy which definitely growe in mats although a taller grass than blue grama. The other grassee of this trancition or subelimax are buncherasses.

Consiaerable data are at hanà concerning the life-history of olue grame sithough the maximum length of life of this grass is not mown nor will ever be mown in sll probebility. Mot all of ite eceãs are viable, although some visile ones are apparently produeed each year, since seedines are touna every jear. This, homever, may be cue to the holaing-over of ungerminated seed from a good seed year, eince our experi-
iments have bhom that viadilty pereiets for several yeare. A strone seealing will cover 5 to 6 gquare centimeters at the ema of the firet season, and ocoasionally will proane a seed-bearing culm or two the firet jear. rost plurts do not bear seed until the cecond year and a few not until the thíd. Then the mat has attained e aiametei of 8 centimeters or more in this forase type, the center tends to aie out laving a ring-shaped mat. This grows outward, and a eertain postion on the ineide asually aies cach year, the part dying veing negligible in a season of consicerable and well uistributed wainfall, and grest in a season of deficient precipitation. The aging out of the older portion of the mat oceure alwas in the arid feriod of the ecason, and gromth aring the rains. This altemete perioa of growth and death is the meane oy which this grass responas to fluctuatione of rainfall, a reepone to ita environment so delicate anu well-balanced that it has made blue grama the greatest dominant on the western and more arid part of the Great Plaine graseland.

AE the cirele of mot growe lerger, parts of it grow facter then the othere. Then an unfavorable season comes, Eegmente of it die out completely, theee vacily beine the slouer growine onea where the dying-back of the eement has caught up and paseed the grointh period. When the rain come eauh wement grows out from the ends and parts of them Will often grow completely around and beck towaces the former center. In favorade yeare manymate coalesee to form
fewer and lare ones, wand often this interlacing of shoots uf ceverel plants is emi-permanent. Then this is iollowca by a ceacon of defiedent reinali, the mety tendo to resolve begininto its former elements. At times, however, parts of coslecoed mets will remain united and any seraration ocourcine eimply eute the intorlaced parts from the perent mate. The more rapid growth of certain shoote t the eage of a mat ususlly cauece arms of cutehoote from that mat, anc tafue yy lore-continued erowth as well as by union whothes mat eesments produce very often lerce irregularI. rhapea mats whieh cover coniderable area althong rareIy measurine more than 3 to 4 entimetens across any one part. One charted near Colorado Sprines, Colorado, coverm ed nearly a squane meter of exound and the chart showing ? it resemuled an attempt to sketch tine plen of a maze. Tide-spresd seedine of blue erame rarely ocours. Seedinas start up pactioslly every year in the areas which have alreagy a cover of the grase, but on adjacent bare areas, even under total protection, it ie only in oocasional jears that the grass advences into them by eecáing. Seed colleations mede each gear since lel and tested for viability show that this differe greatly from year to pear. A small number of eech yeare crop have gerninatea, usually mach lese than ore pertent. The crop of 1921 showed a mach njehex rete of eerminution (3 per eent) aná the following egavon (1982) ehoveá a large numuer of plante startea in the bere part of the protectca areae at 3eligman.

The life-history of porapine grase (Stipa comata) differs somewat in this formation from thet which it undergoes in the gellow pine forest. Seede collected from plants in the savemmah eraselana do rot show the continuously bigh germination found in those colleated in the forest. The rate of gemmination is therefore lese, and the rate of growth is usually also lese. As the secilinge usually start up in the more lavoreble seasons the size of surviving ones at the end of the first season are (of the same size as those of the forest. The plants do not grow as repialy after this year, however, and rarely reauh great size, the maximum area usually being 25 square centimeters.

In the srazing type found pon the rocky ridees, little reastem (Anaroposon scoperius hirtiflocus) has approximateIy the same life-history as in the forest. Sideoats grama (Bouteloua curtipendula) has not been described. It produees a large number of spikelets each of which falls as a unit and contains, as a rule, at least one viable seed. Crops from several yeare have shown as high as 85 per cent serminetion, 100 spikelets produeins about 85 plents. Thie gesss, theiefore, shows the same ability to reproduce itself from seed as is found amone the annuals. The tutte formed are individually small out often grow so elosely that they form semi-mats. These tufts often aie out excent for one or more buds o. shoots, each of which produces a new tuft. In this manner, a numbe of adjacent tufts may be formed from one parent, ana hile each is a distinct individual, they are
but segregated parts of one plant, This grass, therefore, life the othe peremiel eremas of this region increases by propagation as well as by secaing, but outsatndine, however, among theee grasses in the letter perticuler, and in this respeat very mueh line aropseed. Like the latter erase, also, it is a chort-lived perennisl.

Very little is known about the life-history of gallete grase (Hileria jamesii). In the years of the experiment no seedlines of it have been found. It tends to spread largely by means of stolons, but this is e very elow process, for it does this rexy elowly, and the stolons do not extend very far. To seedlinge have ever been obtained from its seed, but this may be due to lack of knowledge concerning the factois necescary for eermination. At all evente, reproduction by seed ia a rare proeess with this grass.

Weeept that wodp-foot srama is often present, the grasslana founa associated with chaparral is very similar to that of the Juniper-Pinyon savennah. For this reason, this graselana neeas no particular mention.

The blue grama forage type produces from 130 to 410 pounds of bay to the acre, the average beine about 385 pounas. Continuous grazing does not apoarently reduce this very mueh. But quadrate at Coloredo Springs where stigs is piesent yield about the zame amount oI blue grama eno en average of 550 pounds of porcupiae grass to the acre. From this it would appear that the loss of the tallgrass component from this area hae reauced the potential yield, which Was alwo itoformer gield, to less than one-half. The

quadrat
Season
Total
AVerage area
of mat
Number of
mate
Pratrie-dog

Average
mats
Number of
标~-
Csteraog

Average of
rats
Number of
mats
104

 venting portions ofrlaryer mats.
 ter undex totul sotection, prairie-dog aresise, ans combined outtle wer reinie-docerarirg, together with the area oecrpied

 coniper kavamah, 12liame, asieome.

The resulte are for one quaret in eroh olot exeent the cattle grated flot. Phe firet olip guadrat (ac 6) tas destroyed during 1896 and was coplaced in Cutooec that aeceon by (Ac 7) wher fumished the data for tact eeason.
yield from the redstem-sideoats greme type in this savamsh near seligmon was at the rate of 856 pounde to the aure. There is no zood reason why a cueceswional type chould yield a ereater amount per acre than the olimax graselenad. Heane of reestablishing etipa must be aiscovered, therefore, to raise the productivenese of this grassland to its maximum efficiency.

THE GRAGLIAD GRGATHG TYA . The olimax vegetation of the "true" grasslena is mixed blue gramana wooly-foot. In forate yiela, wooly-foot zrama produces the greateet amount per unit area, but when closely grared yields but a fraction of this amount. Then elosely eliped this grase tahes three ycare or more to recover. The base of the stems are woody and tough and under a reasonable emount of grazing these axe not touchea. Under wuch conátions, coneiderable forabe is produed oy thie grass ean gear.

The rocky slopes and riäges bear the game types as are found in the Pinyon-tuniper savenneh. The subolimex grase in the playas is bmrograss (seleropogon brevifolius) and this is worthless for grazing purposes, being highly unpalataile. The stage precedine this grass is one componed of Eelianthus ciliaris hich is also worthless. on certain of plateaus overlying "rim roch" or vasalt flows, when the soil is enallow ena aries out reauily, ring grass ie a nomal constituent. But since this gracs also is grazed reluctantly and only when all other forege ie lackine, it has spresu grestly.

The maximum yielo of foree in the cominent type of this grsesland on the proteoted plot at Seligman wae 895 pounus in 1g2d. The deficient rainfall for the semen of 1525 cauied a requetion in this rute to 85 pounas per acre. The variation in yield from a favorable to an unfavorable year is thenelore very great anu aús to the difficulty of utilizing this forbe type in an efficient manner. It is naturally imposside to expand ana contract heras of abtle or sheep on such range so as to alwags utilize it to its fullest capacity without overgrazine it in unfavoreble years. This has aided in the destruction of this range over consiaereble arecu, and mut ve taken into account in all measures unaertaken to restore the range.

The trancition phase of this Erasoland as it pasees into the desert plane sraeslanc ailfere in that blue grama has aropped out leeving only wooly-foot. This, however, is associatea with dropseed and three-avn. Thether these ere regular constituents of this phase or successionel grasees could not be aetermined definitely, but the evidence at hand woula inaicate that they belong among the climax dominants, dropeed especially. In all protected pleces, such as the Tailroad right-of-way, this latter grase is elways associated with wooly-foot Erana. Three-awn (Arietiaa purpurea) wae usually present as well.

No0 $]_{1} y$-foot grama (Bouteloua exiopoaa) spreads ohiefly by stolons. Attempte at germinating eefus of this grass have oecn unitormly unsuceeseful, but seedings are ocea-
sionally found in nature. Visble efedo appear to be proauced in quantity only at intervels of atveral years, only one such erop havj:g been obeerved (season of 1918 on the Banta Rita Ranet Recerve). A seedine forms a fairly laree plant undet protection in two yecre. The outer culme bend toward the eround, root at the nodes and a numuer of emalles plants eurrounäing tae purent. Two yezre after a node has rooted in this fawhion, it also proances stolons and this proeess continues inuelinitely. rais grass forms tutts rather than aistinet mets anci therefore is of the eemi-bunch type of grass.

The firet growth of this graes in the spring is by eIongation of exieting culms of stems near the base. The new lencth of internode appearing is green (with a white wooly pubereconce) anc this seems to take the plaue of leavec for the time beirg. When the zummer rains come, leaves also appear. This neioit of using green stems protected by hairs or othex means for carrying on photocynthesis, is a common method among desert and semi-desert plante to carry them through the aria parte of the growing season. Among grassea, however, it is unusual. This serves to explain the ability of this grass to become more dominunt than blae grame towara the aesert euge of the grassland.
 ert plaine differ from the true aesert in having an appreaiable stanu of peremial grassec. The dominant grass is Rothroci arara (Bouteloua rothrockii). IeEser associates are aropeead, black mesquite erass (Mahlenberqia porteri),

Eallota grese (Hilaida mutioa) ond eeveral speciee of Ariotiag, nanely A. aivariosta, A. californice, anc A. purpurek. The grasoes of the true aesert are ohietly amaal, amaal three-eim (Eristida bromoides), ard two species of six weers Grama (Bouteloua barbata, ana B. Eristidoiaesy. The true aeefrt has an averrge of 3 inches or lese of rainfall and the majority of perennial grasecs cen not survive the long periode between rains. A few are exeeptions. Tubosa grass (Hilaria rigiaa) a shrubby deep-rooted perennial grows along the wanes where it ean reach the water which flows uncergrounc for some time after the raine. Mesa grase (Dapgehlou pulohella) is an inoignificant perernial of no grazing value found on the firmer ground of the caliche mesas or teble-lanus. The principle grase of the true desert, honever, are armual threc-awn, and the six weeks gramas.

In this region the desert plains greases have been almost wholly grazed out. Those normally growing under the protection of the shrubs heve survived in some measure. These are absert three-emn (Aristiaa califoraica) common three-ewn (Aristiàa purpurea) and black mesquite grass ghurlenbersia porteri). Only galleta grass has survived to any extent among those that grow in the open. The bases of the stems of thie grass are very woody ana hence it cen not be grated ordinarily to the basel buds and aestroyed. On the whole, the grading value of this formation has largely disappeared and ie of value only after the raine heve produced a orop of annual herbs and grasses.

```
Table stationsesent cimpositian of the least iniured portions of the rande at the princio al
```



```
Number
quadertig
averaged
Mutnourat-
M4y
        22.55
    3
    .
    -4zto
    8,
-
```



```
a.
\(8 \%\)
\&
```



```
。
6
.23
.09
```



```
1.31
```



```
m
                                    \(\begin{array}{lll}\text { on A } \\ \text { N } \\ 0 & \text { iv } \\ \text { N }\end{array}\)
                                    \(\begin{array}{lll}\text { on A } \\ \text { N } \\ 0 & \text { iv } \\ \text { N }\end{array}\)
                                    \(\begin{array}{ll}\text { or } & \text { A } \\ \text { N } \\ 0 & \text { iv } \\ \text { N }\end{array}\)
                                    1.41
18.34
\(\cdots\)
3
5.46
.\(\quad .96\)
                                    N N N N
                                    3
            \(m\)
```


Rance Mra. The moot important range damage in this region is aue to two cases, overgrazing and rodent áestruetion. The rodenw are chielly prairie dogs, oynomys gunnisoni guniencis). Minor causes at times pioduce aamage to the rance, but usually are too infrequent or too insignificant to require mose than passing mention. Destraction by trampIns is almost certain to ocour around water holes. Areas suoject to. Llooding may heve the vegetation completely silled at intervale auring the history of the formation. Fires may be doetructive to the range particalarly if they oceur near the end of a very dry season by consuming the entire plant, inuluaing the basel buas. In some areas, also, ants may reduce the range considersbly when in great numbers by elearing the groun aroun their burrows. These factors pale into insigaificance by the almost universal overgrazing and the vast colonies of prairie 0 ogs to be found in the best parts of the grassiand.

OVRRGRZNHG The eause of overgrazing dates back meny gecrs. The open rarge was free to any man who had the eattle and could control one or more fater holes. At first there whe not surficient eattle to stoen the country but as the heras increased and the cattlemen became more numerous eadh cattleman deliofrately overgrazed hie range to prevent or Aiscourage some other oattlemen from encroeching uron his range. As the competition for range increabed these practiees became worse, neighboring cattlemen often placingexcessive numbers of eattle upon the disputed areas to obtain

 almost univereally over the mest watulemer are etochiro thejr mances to mose then their maximum eapauity in oraer to moduce cs many catule de posetole. Many of them only now ane beginMus to fealize the shontelehtedness of this polioy. Texy Lew xances exiet that have even a fraetion of thein formor enrying apauity. Only wen the rage ocn be lecally oucupieg by each eattleman, lue governmert givine hion a elean titie ox long term lesee to his rance, can this concition oe rameaped. nven then a long cempaign of ecuogtion mat be earaied into effcot to cuverto the lese progreseive oattieman in regama to the best mesne of rance continuation.

Fexhype the greatest sincle factor in the continuetion of ranse deetructiun is the altemate Euceesmion of favoreole and untarorable seasone. During a period of geare of high xaint fall the average vatuleman expuras bie hends to utilize all the gease present. Then the unfavorable years come the range can not earry the oattle with which he has stooked it and in on enaeavor to maintein thei~ existence tho eatule will eat the grese olear to the roote and zeen it in thjs state until it 1s finally otarved out.

During the ory years when the erasees are destroyed very few glants oome in to oolonise the denuneo croa, out when e moxe favonable yedr ocmes along the ungmened plante ane per-
 ususlly are not, hemee woh wiecs are nearly dimas colonized b. unnadataole sreaies. In the ehort-grese pleins the
chief of these plants is Gutiercezia. Hence the comine in of this plant is the fiset indicution to the outtlemen that his range io overerased. In mang aress the grass has been totally destroyed and completely replaued by this low shrub. guch a condition is found surroundiag the town of Seligman. No method is as yet known by which sueh a range mon be reestablished uneer preeent conätione.

In wheaterace forge type overgrazing, if not too intence, aestroys aropseed and cause the spread of blue giamet If this is continued whestgrase also aisappears and the park becomes a erana flat often with Peas timothy associated with the olde erama. One quadet in thie type park showed earty thae pefucht Texas timothy, fift two pergent blue 5 Erama and five per gent Gutierrezia. Under more intense grazing Chrysothamus and Gutierresia come in dircetly without the blue grama appearing at all. In the Grend canyon forest sage brush also comes in and many such overgrazed perse coneiet of Chrgsothamnus and eage brush with only occasionta grasses erowing in the proteotion of the shrubs. In the shortgrass plain the ofrassee under more moderate grazing may ve replaued by ring-grast of a mixture of ring-Erase and Gutierrezia. This? is the least palatable of the species of grass ocourring in this formation and is theretore permitted to produe a crop of seed. In the swales snả flood areas, burio zrase (Seleropogon brevifolius) beince alwo unpalatable will often oceupy these areas if not too heavily overgrazea. Gutierrezia, hovever, is the mont common and univessal inuicator of eattle overgrazing.

Special conaitions siso oucur; if a ary gear or a sesies of dry yeais ie tollowed oy a very fevorade one, Ruscian thistle may come into the bsre area unc completely dominate it in the abeence of the grasses. This, however, is not an unmixed evil, fotit is reabily grazed by cattle in asucoulent stases.

At the southern edge of the graseland formation or wherever it comes in contact with the denert shrub, the effeet of overgrazing is to favor the latter formation. Judgitg from the finaine of reliet gresees in the region weet and south of Kingman, this hac already ocucred in this area. Suah a replaceqent of grasslund is a widespred ocurrence in southern Arizona. It is still continuing on the western edge of the grabeland formation in the region here covered. Twelve miles dast of Kinemen is an area where the grasses have been wholly aestroyed, which is now occupied by Yucea bacesta and opantia arborescens, but is totally surrounded on all sides by grassland.

The first step in range recovery mast be the acquiring of a title or lone term leaee to the range ocoupied, and, then fencing into pastures to segregete the various forage types. In this manner, if the types are suficiently aiversified, deferred grazing can be aasily arranged to permit each grass type to bear asufficient crop of seea each year to permit requvexy of partially ánuáea ranze. If the forase is all of one tupe, rotation grazing mut be practiced in mioh part of the range each year is allowea to proanee
a crop of seed ant so vermit recoverg. This is done uy resting the pasture tor a year in mole os in sreater part. Buch prectice also sives a certain amount of reserve rance for ase during unfavorable yests. No experimente have been carried out to develop an economically possible method of retoring a completely destroyed range. Experiments are now beine startea with respect to reseading such ranges with orisinal srabub. Our experiments have alreauy shown that it is hopeless to try to establish grasese which do not naturally belong to the formetion.

Certain fanges hsve been bady damoged neain the water holes while practioally untouched some distance away. This can be remedied in part by salting cattle in the untouched part of the renge, but the best method of remedying this condition is increase and distribution of the water holes or tanks. Then the range can be foneed it is beet to heve pastures not lurger than foux miles in entent in any airection un to have the water supply in the center of such a pasture. It is common experience that range much over tro miles awoy from the whering hole is not utilized to its fullest ospacitg.

RODENG De majonICT. Rodent damage to the range io very distinotive and in many respeets vesy different from that produved by overgrabing. Such amage is always intensified by grazine and over the greater part of the grassland formation in this resion has pevome critioal. This ie due to two major eauses, both of which are introduced by the cat-
tleman. Becauce the range is grazed to the limit of its ourcing capasity prairie ás muat tane what is left and as they are able to graze the vegetation to the roots they tenu to elear the grouna completely in a very short time. The ácutruction of predatory animals by the cattlemen to protect his herd and flocks has upset the originel balsnce in nature and permitted the prairie dogs to increaee greatly beyond their former numbers. The killing of predatory animals is of course justifieũ, but to compensate for the removal of thi check upon the increase of the prairie doe, similur esmpaigns for the eradication of the roaents must de waged.

Prairie doge tena to concreate in towns in the very best portions of the runge, and in competition with cattle for the frasees grase of the graus mats completely, leaving only the roots with not even a bud to start the plant again the following jeat. The rodents remain in their burrows until the uistance to pasture becomes too great for safety when they move. Betore this is chone, however, the ground is combea again and again by them in search of food, so that no remant of graes remains to reseed the area after they have moved. The result is a dead area or one occupied by Weeảs behind the colony aith the prairie dogs gradually ado vancing into the untouched grassland, leaving total aestruction behina. As this goes on, in favorable as well as unfavorable yeare, and as the jamege is not a graual decrease in the amount as under overerazing, the plants asbociated With such amage are usually of a quite aifferent type then
that found with overerazing alone.
The succeecion pon the aead area behina a prairie dog colony noually beeine ith the coming in of Verbevine enceIioides. Thisforadually replscea by Gutiercezia or, if not too heavily grazea by cattle, by Aristidas, Decauee these by the nature of their fruits can invade the area at some distance from the seeding plants. The prairie doss, however, do not, as a rule, colonize rocky spurs or xidees with very shallow soil since burrows eannot be dug in such places, and often advance past such areas which then serve as points from which the range may ve reectablished. Along many such ridges, however, parts of the colony establieh themselves permanently and deetroy any plants which may appear by resceang from such puxs, and in such caves the damage continues until the rodente are destroyed. The area at Beligman is locatea on the edge of such a rocan ridee. In the five gears of the experiment the prairie dogs have not advanced tow ra the ridge to any measurable extent. Excavations made in the grawsland at this plece show that the. soil is resiaual except for the top three inches, being uompoota largely of wheuler ortho-clase fragments still in the same place as they wexe in the granite rock from whioh they wore derived. The soil ie not over tifo feet deep and passes gradually into the solia rock. The roots of the frassee penetrabe to a aepth of thenty-eisht inches, but alone the 15 lset fifteen inches only along the former clearage and crystel planes of the original rock. The cock fragments are in
part cemented by caliche so us to maze very hard dissing and apparently this has discouraged the prairie age from attempting to establish burrows in such ground. Behind the prairie dog tom the grasses have been totally destroyed and in 1918 Were colonized by Verbesina encelioides. In 1920 a few plants besting of Rucaisn thistle (Salsola kalif) appeared and in 1921 this han in part replaced the Verbesine. In 1982 the entire area Was occupied by Raceian thistle and apparently no Verbesine remained. In 1923, the late appearance of the rains pevented the rowth of Russian thistle daring that season. In the meantime, fing-grase has appeared and is gradually colonizing the area in place..

The amount crazed by prairie doss in the areas where they are not destroying the vegetation completely is surprisingly great. The forage eaten by cattle ut seligman was only 41.2 percent, while that eaten by prairie dogs Was 40.9 percent, the difference of only threettenths of one percent. In the wheatgrase type at Coconino the amount destroyed by prairie doze alone was 80 percent of the total forage produced. The wheatgrass, however, is reduced 60 percent while the aropseed is reduced 99 percent. Hence the aropseed is subject to greater $\bar{d} a m a g e$ by prairie dogs than any other grass. At Williams 83 percent of the available blue gram forage was destroyed by prairie do zs. This shows that prairie dogs, even in the places where they are apparently not doing any damage, nevertheless reduce the amount of forage present to an almost negligiole fac-
tion of whet it should be. The etockman realizec the damgee abo very reaily where the range is entircly destroyea, but has no inking of the terrific toll taken og them where they are doine no apparent damage.
"According to the evidene here presented prairic doge and eattle feed on the same gressed and prefer them in the dame order. Prairie dog do not, from all the evidence obthined from four yeare obervation, eat enything that onttie do not. Thus they are thrown into direot, unt in times of drought, desdly competition. So fer as these experimento zo, prairie doge cannot be shom to have a single beneficisl Lood habit. In some overgrazed areas, apparently, the total exadeation of prairie aoge as well as the reauction of oattle per anit axca, will be necessary if the forage is to continue to exist. (Taglor an Loftificla, 1924).

Overgrabing is a gradual destruetion procese on the rande in which the gresses are slowly replaced by non-palatable plants. It usualy does rot continue until the range is totally aestrojed because the eattleman after a time realizes that his range is disappearing and chechs the procees. Moreover, the incoming unpalatable species eerve to give protection from grazing to all eresees growing up through them. Rodent camase, however, cauee complete destruetion, which spreade a the colony advances into the unoamagea graseland, and in sueh cases the range oannot de recstablisned by any evonomie procese now monn. This conetituter the chief difference betreen tie tro types of
range damuge ank uloo expluin the uiflorencer in the vocescion initisted oy such damse.

Other rodente reduee the exrrying cspacity materially. occarabits compete vith the cattle for forcge but do not have the dectruotive effect upon the range that praixie doge do. The toll taken by theee animals hes been meacured quantitatively on the Gants Rita recenve in Bouthom Arizona, but no data of aveilable concerning their effect in the northern nart of the state. Here, however, they are not nearly as numerous as in southern arizone. The poenet mice, speeies of Pecognathas, also cuave some damege by destroying seed. As a rule this dam, ge is not serion, for the animale occur chiesly in place where the grasece dre permittek to proàue coneiácrable seed, ana they get by no meane all of it, épecially in fevoraole yare. Ante also consume a conciactable emount of seed and in many cases obtain nearly all of it. Cextain of them form elearings and when thece are numesous reduee the range appreciebly. In ore area stadied fown miles south of seligman the elearings ofcupica 7.2 per eent of the total area, but sas these elearince..ere in an area oceupied othervise by Guterregia, they een haraly be said to reauce the range forage They ala oecur in graceland, although they have never been found quite as abunänt as in thie area.

Bergaan, H.R., and Stallard, H. 1917. The development of climax formations in northern Minnesota. Minn. Bot. Studies 4.

Clements, F.E., 1916. Plant Succeasion. Carnegie Inst. Wash. Pub, 242. 1920. Plant Indicators. Carnegie Inst. Wash. Pub. 290.

Leiberg, J.B., Rixon, T.F., and Dodwell, A., 1904. Forest conditions on the San Francisco Mountains Forest Reserve. U.S. Geal. Sur., Prf. Paper 22.

Pearson, G.A., 1920. Fators controlling the diatribution of forest types. Ecolagy 1:139.

Sampson, A.W., 1908. The revegetation of overgrazed range areas.
U.S. Forest Service Oirc. 158

Shantz, H.L., 1917. Plant successions on abandoned roads in eas女ern Colorado. Jour. Ecology 5:19.

Stallard, Harvey, 9917. Secondary succession in the climax formations of northerm Minnesota. Ms.

Taylor, W.P., and Loftifeld, J.V.G., 1924. Quantitative Determination of prairie-dog damage in northern Arizona. Ms.

Thornber, J.J., 1910. The grazing ranges of Arizona. Ariz. Agr. Exp. Stat. Bull. 65.

Weaver, J.E., 1914. Evaporation and plant succession in southeastern Washington and adjacent Idaho. Plant World 17:273. 1917. A study of the vegetation of southeastern Washington and adjacent Idaho, Univ. Nebr. Studies 17:1.

Weaver, J.E., and Thiel, A.F., 1917. Ecological studies in the tension zone between prairie and woodland. Rep. Bot. Sur. Nebr. 1917.

Plant Bouteloua gracilis in Quadrat As1 R. A Son of 1919

1	2	3	4	5	6	7	8	9	10

telona gracilis in GROWTH RECORD SHEET

GROWTH RECORD SHEFT
Plant Boutelowa gracilis in Quadrat As 1 ason of 1921.

\square
\square 4

Plant Aristida divaricata in Quadrat GROWTH REEORD SHEET

$\begin{array}{cccccccccc}\text { Plant Aristida divaricata on } & \text { GROWTH RPM ORD SHEFT } \\ 1 & 2 & 3 & 4 & 5 & 1921 & & \\ 1 & 2 & \text { Season of } & 1921 & 8 & 9 & 10\end{array}$

Wheatgrass Park in the Grand Canyon Forest. Yellow Pine intthe Background With Oak (Quercus gambeli) accupying the Slopes.

Fenced Areas of the Caconino Experimental Plot. Wheatgrass and Blue Grama in the Foreground grazed to the ground, Wheatgrass. and Weatern Dropseed Knee-high within the Fence.

Sagebrush and Chrysothamnus Park in the Grand Canyon Yellaw Pine Foreat.

Blue Grama and Texas Timothy as Grass Cover Under Yellow Pine in the Grand Canyon Forest. A Sagebrush growing between the Tree and the Quadrat.

Ring grass coming into an Area cleared by Prairie Dogs. Atriplex canescens and Chrysothamnus, Plnats nat grazed by Prairie Dogs as a Rule, share the Ground with Ring Grass in the Background. a

Eurotia lanata, society surrounded by Chrysatharmus and Atriplex. Successional Stages in the Grassland between Williams and Grand Canyon.

Incipient Recovery under Over-grazing. Blue Grama returning to a Flood Swale or Playa in Chrysothamnus-Atriplex Associes produced by the removal of the original cover of Blue Grama.

Juniperus monasperma killed in Competition with Chrysothannue and Blue Grama. The Blue Grama has since been Grazed out.

Grama grase park in Quercus undulata-Rhus trilobata chaparral, Prescott. Grasses are Bouteloua curtipendula, B. gracilis, B. eriopoda.

The rack riđge assoies in grassland, Seligmen. Afew Junipers are present, The grasses on the ridge are Andropogon scoparius, Bouteloua cyrtipendula, B. gracilis, and Aristida divaricata. The lower part in the foreground contains a Fallugia paradoxa chaparral associated with Texas timothy, blue grama, and western dropseed.

Plate VI.

Typical graseland association, Seligman upper Big Chino Valley. This grassland averages 61 per cent blue grama and 39 per cent wooly-foot grama.

Last etage in the over-grazine of this grassland, Seligman. Only Gutierrezia left, not a single grass plant for milea to reseed the range.

Nearly typical grassland of the lower edge of the formation. Grasses average 63 percent wooly-foot grama, 19 percent galleta grass, 7 per cent dropsed, and 11 per cent blue grama. Gutierrezia (aver-grazing indicator) is comon as well as Yucca baccata, a subdominant of this edge of the grassland.

Overgrazed phase of the lower edge of the grassland formation. This area is about two miles in diameter and completely surrounded by grassland.

Yucca arborescens in Fouquiera-Franseria-Opuntia-Yucea assaciation of the desert scrub climax. In the wash are several plants of Tubosa grass. Near Yucea, Arizona.

Larrea-Franseria assaciation in the desert scrbb climax, Sacramento Valley. In the foregraund ia a Tubasa grass plant and a pipe-stem cholla with Muhlenbergia growing up through it.
porteri

Hilaria rigida in foregoound, Hilaria mutica in background in the Larrea-Prosopis association of desert scrub climax, 25 miles north of Phoenix, Arizona.

Typical plant of Yucea baccata, Oatman, Arizona.

